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* Multi agent reinforcement learning
approach to learn eco-driving
stfrategies at signalized intersections.

Under 100% penetration of CAVs,
- 18% reduction in fuel
- 25% reduction in CO2 emission
- 20% increase in travel speed

Even 25% CAV penetration can

bring at least 50% of the total fuel
and emission reduction benefits.

Infroduction

Transportation sector in the US
contributes 29% to the green house

gas emission (GHG) in which 77% is
due to land fransportation.

Previous studies on eco-driving af
iInfersections,

assumes a model of the vehicle
dynamics (model-based)
simplify the objective 1o fuel
reduction and ignore travel fime
Involve solving a non-linear
optimization problem in real time

Our reinforcement learning based
approach is model-free and
optimize fuel consumption while
reducing impact on travel time.

Vindula Jayawardana®, Cathy Wu?

TEECS, LIDS

Methodology

Model-free RL
Action A,

[ I Reward R,

State ST

Maximize discounted — maXaZ yir.(st,at = my(st))
total reward t=1

* |n mulfi-agent RL, each agent has a policy

Eco-driving at signalized intersections

Markov Decision Process
(MDP)
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if any vehicle stops at the start of a lane.
if average fuel <06 A average stops = 0.
if average fuel < 6 N average stops > 0
otherwise

r(s,a) = <

t CEE, LIDS, IDSS

« Challenges in composite reward design

o oObjective terms are compefting (fuel and travel fime)
o rate of change of the two reward terms are different
In different regions of the composite objective
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Baselines

* V-IDM: vanilla IDM car following model

* N-IDM: IDM model with noise (variability in driving)

 M-IDM: IDM with noise and varying parameters (diverse
mix of drivers with varying levels of aggressiveness)

« Eco-CACC: a mode-based trajectory optfimization

Fuel Model: VI-CPFM Emission model: HBEFA-v3.]1

Questions

« QIl:How does the proposed control policy compare
to naturalistic driving and model-based confrol
baselines?

« Q2: How well does the proposed control policy
generalize to environments unseen at fraining timee
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Resulis

Learned behavior: 100% CAVSs

Inflow: 800 veh/hr

Conclusion

« Significant savings in fuel, emission
while even improving travel speed.
Generalizability of learn policies 1o
out- of-distribution settings is
successful
Future work: National level impact
assessment as a climate change
infervention
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