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Abstract—Motion forecasting for surrounding on-road agents
is challenging and essential in safety-critical autonomous driving
systems. In contrast to conventional data-driven approaches that
primarily adopt the supervised learning paradigm, our focus is
to explore the potential of inverse reinforcement learning (IRL)
for autonomous vehicles, which holds promise due to its learning
from interaction mechanisms. In this work, we present a novel
Query-centric Inverse Reinforcement Learning framework for
motion forecasting, termed QIRL. First, we encode the traffic
agents and scene elements in a vectorized manner and aggregate
the context features utilizing a query-centric paradigm. Subse-
quently, we employ the maximum entropy IRL method to infer
the reward distribution and derive the policy capable of inducing
multiple plausible plans. Finally, conditioned on the sampled
plans, we introduce a DETR-like decoder with a refinement
module to generate accurate future trajectories. Experimental
results on the large-scale Argoverse motion forecasting dataset
demonstrate our proposed IRL-based predictor exhibits highly
competitive performance compared to existing supervised models.

I. INTRODUCTION

Trajectory prediction plays a crucial role in bridging the
upstream perception and downstream planning modules in safe
autonomous driving. However, accurate motion forecasting
of surrounding traffic agents poses significant challenges due
to its inherent uncertainty and underlying multi-modality: an
agent can have multiple plausible future trajectories given its
past observations and the available scene information [22].

Existing works primarily adopt learning-based frameworks,
which leverage deep neural networks to encode the histor-
ical motion profiles of agents, as well as topological and
semantic information of high-definition (HD) maps in either
rasterized or vectorized context representation. Recently, the
Transformer-based architecture has been extensively explored
for feature extraction and fusion [21, 29], because of its
notable improvement in overall prediction performance.

In general, the data-driven predictor can be regarded as
imitating the behaviors of human drivers from a large amount
of recorded data in real-world driving scenarios. This typical
imitation learning task in robotics can be approached mainly
in two ways: behavior cloning (BC) and inverse reinforcement
learning (IRL). Most advanced methods in motion forecasting
predominantly employ the BC framework, which involves
directly learning the distribution of trajectories from datasets in
a supervised manner. On the other hand, the IRL architecture
models the agent’s behavior as a sequential decision-making
process [17] and aims to infer the underlying reward function

that is considered the most parsimonious and robust represen-
tation of the expert demonstrations [15].

Despite achieving impressive performance in motion fore-
casting benchmarks, the BC-based learning fashion still pos-
sesses inherent challenges such as the covariate shift issue,
whereas IRL offers a promising pathway to alleviate them,
thanks to its learning from interaction mechanisms. Another
critical concern associated with the supervised approach is
the modality collapse problem. As only one ground-truth
future trajectory is provided as supervision, the predictor has
to generate diverse plausible predictions via learning one-to-
many mappings [20]. In contrast, the IRL framework holds the
potential to address uncertainty by integrating the maximum
entropy (MaxEnt) principle [30]. The MaxEnt IRL paradigm
intends to derive the reward distribution with the highest
entropy [10], which can better capture the intrinsic multi-
modality of demonstrations. Furthermore, the learned reward,
as an interpretable intermediate representation [25], can also
benefit downstream decision-making and behavior planning in
highly complicated and interactive scenarios [8, 18].

In light of its superior properties, the MaxEnt IRL frame-
work has garnered significant attention in recent research
[5, 24, 27]. However, to the best of our knowledge, most
traditional IRL algorithms typically operate efficiently in grid-
shaped environments, which prompts existing work to utilize
rasterized context representations, rendering scene elements
into bird’s-eye-view (BEV) images as input [9, 3, 7]. Conse-
quently, the performance of IRL-based predictors is hampered
by scene information loss and inefficient feature extraction.
This contrasts with state-of-the-art supervised models, which
typically employ vectorized representations [29, 21, 14, 26].
To bridge this gap, we propose adopting a query-centric
paradigm that can effectively aggregate vectorized features
into spatial grid tokens, thereby empowering the IRL-based
predictor with exceptional motion forecasting capabilities.

Overall, the main contributions of this work can be summa-
rized as follows: (1) We present a novel Query-centric Inverse
Reinforcement Learning (QIRL) framework for the motion
forecasting task, which is the first to integrate the MaxEnt IRL
paradigm with vectorized context representation through the
query-centric fashion. (2) We introduce a hierarchical DETR-
like decoder with a refinement module to improve predic-
tion accuracy. (3) Our approach achieves highly competitive
performance on the large-scale Argoverse motion forecasting
benchmarks [2] compared to existing supervised models.
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Fig. 1: Overview of the QIRL framework. We integrate the MaxEnt IRL paradigm with the query-centric motion forecasting
pipeline to showcase its effectiveness. The scene context features are extracted using simple encoders and then aggregated to the
grid queries. The sampled tokens derived from the MaxEnt IRL process are further employed to generate trajectory proposals.
After clustering and refinement, multi-modal future trajectories along with their corresponding confidences are finally obtained
by the trajectory and probability decoder.

II. METHODOLOGY

A. Framework Overview

An overview of the proposed QIRL framework is pre-
sented in Fig. 1, demonstrating its seamless integration of
the MaxEnt IRL paradigm with the query-centric trajectory
prediction pipeline. Firstly, we represent the driving context
in a vectorized manner and leverage the agent encoder and
map encoder to extract scene features. These fused features
are then aggregated into spatial grid tokens through cross-
attention mechanisms. Subsequently, the grid-based MaxEnt
IRL algorithm is employed to infer the reward distribution,
thereby obtaining the optimal policy that can be sampled to
induce multiple plausible plans or traversals over the 2-D grid
map. Finally, we introduce a DETR-like [1] trajectory decoder
accompanied by a refinement module to generate multi-modal
future trajectories in a hierarchical fashion.

B. Query-Centric Context Encoder

Considering context rasterization suffers from information
loss, we represent agent trajectories and corresponding HD
maps in a vectorized manner. Herein, we adopt the target-
centric coordinate system, where all context instances and se-
quences are normalized to the current state of the target agent
through translation and rotation operations. Subsequently, we
leverage an agent encoder which is a simple 1-D CNN with
a feature pyramid network (FPN) [11, 12] to encode the
kinematic profiles of all agents in the scene, encompassing
historical positions, velocities, and other relevant attributes.
Additionally, we devise a PointNet-like network [19, 6] as
the map decoder to extract static map features. The resulting
agent and map features are then concatenated to form the
context tokens. Unlike most IRL-based methods that com-
monly depend on image-like or rasterized features as input, we
introduce learnable grid-shaped queries with 2-D spatial rela-
tive positional embeddings to aggregate the vectorized context
features using the Grid2Context cross-attention module. The
updated grid tokens are further reshaped into a grid-shaped
map, thereby seamlessly adapting to the IRL framework.

C. MaxEnt IRL-based Policy Generator

Using the grid tokens as input, we employ a neural network
to construct a nonlinear mapping from the context features
to the reward function R, which serves as a succinct repre-
sentation of the driving context. Following the MaxEnt IRL
framework [30], the probability of a state sequence (or plan),
denoted P (τ), is directly proportional to the exponential of
the total reward accumulated over the planning horizon H:

P (τ) =
1

Z
exp (R(τ)) =

1

Z
exp

( H∑
i=1

R(si)

)
, (1)

where τ = [s1, . . . , sH] represents any given plan, si indicates
the i-th state, and Z denotes the partition function. Further,
we convert the continuous-valued future trajectories from the
dataset into discrete state sequences using a simple uniform
quantization technique with a specific resolution, constituting
a set of demonstrations denoted as D = {τ1, . . . , τ|D|}. The
objective is to maximize the log-likelihood of the demon-
stration data LD under the MaxEnt distribution. This opti-
mization problem can be solved by employing gradient-based
approaches, and the gradient is given by

∇LD = (µD − E[µ])∇R, (2)

where µD represents the average state visitation frequencies
(SVFs) from the demonstrations and E[µ] refers to the ex-
pected SVFs under the policy [24], which can be derived via
a forward RL process given the current reward distribution.
Here, we leverage the approximate value iteration algorithm
to obtain the policy π(a|s) with the following expression:

π(a|s) = exp (Q(s, a)− V (s)) , (3)

where Q(s, a) represents the action-value function and V (s)
refers to the state-value function. Upon convergence of the
reward distribution, we can acquire the optimal MaxEnt policy
π∗, which enables the generations of multiple plans over the
2-D grid, acting as trajectory generation priors.



TABLE I: Quantitative results on the Argoverse 1 motion forecasting benchmark. The best and the second-best results are in
bold and underlined, respectively. All metrics follow a lower-the-better criterion. brier-minFDE6 is the official ranking metric.

Method MR1 minADE1 minFDE1 MR6 minADE6 minFDE6 brier-minFDE6

mmTransformer [13] 0.6178 1.7737 4.0033 0.1540 0.8436 1.3383 2.0328
SceneTransformer [16] 0.5921 1.8108 4.0551 0.1255 0.8026 1.2321 1.8868
HiVT [28] 0.5473 1.5984 3.5328 0.1267 0.7735 1.1693 1.8422
MultiPath++ [23] 0.5645 1.6235 3.6141 0.1324 0.7897 1.2144 1.7932
SIMPL [26] 0.5796 1.7501 3.9668 0.1165 0.7693 1.1545 1.7469
Wayformer [14] 0.5716 1.6360 3.6559 0.1186 0.7676 1.1616 1.7408
QCNet [29] 0.5257 1.5234 3.3420 0.1056 0.7340 1.0666 1.6934
QIRL (Ours) 0.5453 1.5824 3.4300 0.1209 0.7977 1.1652 1.7363

D. Hierarchical DETR Trajectory Decoder

Based on the converged reward, the MaxEnt policy, updated
grid tokens, and context features, we introduce a DETR-like
decoder with refinement to generate K multimodal predictions
and their corresponding probabilities in a hierarchical fashion.

In the initial proposal stage, we generate multiple plausible
trajectory proposals conditioned on the sampled grid tokens.
To achieve this, we first employ the learned MaxEnt policy to
induce plans over the 2-D grid map using the Markov chain
Monte Carlo (MCMC) sampling strategy. Each sampled plan
is then utilized to extract the associated grid tokens and relative
position coordinates. After concatenating them as the plan
feature embedding, we leverage trajectory proposal queries to
aggregate these features with a Proposal2Plan cross-attention
module. Recognizing the inefficiency and redundancy of sam-
pling only K plans, as a small number of samples tend to
produce similar outputs [4], we oversample L (L ≫ K) plans
in parallel, thereby inducing L trajectory proposals to better
capture the trajectory distribution. Consequently, we derive
K possible future trajectories from the set of L candidates
through a clustering module.

In the second refinement stage, we predict trajectory offsets
conditioned on the K initial trajectory proposals acting as an-
chors. Each trajectory proposal serves as a query and retrieves
its nearby context features using a DETR-like decoder similar
to the one used in the trajectory proposal module. The fused
features are then fed into an MLP with residual connections,
which comprises a regression head for producing predicted
trajectory offsets, and a classification head followed by a
softmax function for generating probabilities. Eventually, the
predicted trajectory can be derived by summing the trajectory
proposal and its corresponding offset.

E. Training Objectives

For the MaxEnt IRL process, our objective is to maximize
the log-likelihood LD through stochastic gradient descent to
derive the reward model and optimal policy, as explained in
Section II-C. As for trajectory generation, the overall learning
objective is composed of both regression loss and classification
loss. Specifically, for regression, we apply the Huber loss to the
predicted trajectory proposal LP

reg , the refined trajectory LT
reg,

and its corresponding goal point LG
reg . The winner-takes-all

(WTA) training strategy is employed to mitigate the modality
collapse issue, which only considers the best candidate with

the minimum error in comparison to the ground truth. As
for classification, we adopt the Hinge loss Lcls to distinguish
the positive modality from the others, following the approach
outlined in [11]. The total loss L in the trajectory decoder
process can be expressed as follows:

L = LP
reg + αLT

reg + βLG
reg + γLcls, (4)

where α, β, and γ are hyperparameters for balancing each loss
component. In practice, we set α = β = 1 and γ = 3.

III. EXPERIMENTS AND RESULTS

A. Experimental Settings

1) Dataset: We train and evaluate the proposed approach
on the large-scale Argoverse 1 motion forecasting dataset [2],
which provides trajectory sequences collected from real-world
urban driving scenarios, along with HD maps that encompass
rich geometric and semantic information. Specifically, it con-
sists of 205,942 training, 39,472 validation, and 78,143 testing
sequences. Each sequence spans 5 seconds and is sampled at
10 Hz. The task involves forecasting the subsequent 3-second
trajectories based on the preceding 2 seconds of observations.

2) Metrics: We evaluate the performance of trajectory pre-
diction using the widely accepted metrics, including miss rate
(MRK), minimum average displacement error (minADEK),
minimum final displacement error (minFDEK), and the Brier
minimum final displacement error (brier-minFDEK). Con-
cretely, the MRK measures the proportion of scenarios where
none of the K predicted endpoints fall within a 2.0-meter
range of the ground truth. The minADEK calculates the
average pointwise ℓ2 distance between the best forecast among
the K candidates and the ground truth, while the minFDEK

solely focuses on the endpoint error. Furthermore, the brier-
minFDEK incorporates prediction confidence by adding the
Brier score (1.0 − p)2 to minFDEK , where p corresponds to
the probability of the best forecast.

B. Quantitative Results

We conduct a comprehensive comparison of our approach
with other state-of-the-art methods on the Argoverse motion
forecasting benchmarks. The quantitative results on the Ar-
goverse 1 test split are presented in Table I. As far as our
knowledge extends, there is currently no publicly available
IRL-based predictor on the Argoverse leaderboard. Therefore,
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Fig. 2: Qualitative results of QIRL on the Argoverse 1 validation set. The historical trajectory, ground-truth future trajectory, and
multi-modal predictions are depicted in red, magenta, and green, respectively. The lower-right corner showcases the probability
associated with the best forecast in terms of the endpoint.

we compare our QIRL framework against several state-of-the-
art supervised models utilizing transformer-based network ar-
chitectures. Note that the current official ranking metric, brier-
minFDE6, takes both the precision of forecasted endpoints and
the prediction confidence into account. It is evident from the
results that our proposed method achieves highly competitive
performance among the listed supervised models. In particu-
lar, QIRL outperforms strong baselines such as MultiPath++
[23], SIMPL [26], and Wayformer [14] in various evaluation
metrics. Although our proposed QIRL falls slightly short
compared to the top-ranked supervised model, QCNet [29], the
findings unmistakably showcase the competitive performance
of the IRL-based predictor and indicate its potential for further
improvement in motion forecasting tasks.

C. Qualitative Results
We present visualizations of our proposed QIRL framework

under diverse traffic scenarios from the Argoverse 1 validation
set, as illustrated in Fig. 2. The qualitative results highlight the
exceptional capability of our approach in accurately anticipat-
ing and generating feasible multi-modal future trajectories that
align with the scene layout across a range of scenarios. This in-
cludes complex intersections and long-range situations, which
demonstrates the effectiveness of our IRL-based predictor.

IV. CONCLUSION

In this work, we introduce QIRL, a query-centric inverse
reinforcement learning framework for motion forecasting in
autonomous driving. To the best of our knowledge, QIRL is
the first trajectory predictor that combines the MaxEnt IRL
paradigm with vectorized context representations through the
query-centric pipeline. Additionally, the hierarchical DETR-
like trajectory decoder significantly enhances prediction ac-
curacy. Experimental results showcase that QIRL excels in

generating scene-compliant multi-modal future trajectories
and achieves highly competitive performance when compared
to state-of-the-art supervised methods. Moreover, our work
underscores the effectiveness of IRL-based predictors and
provides a promising baseline for further investigations. Future
work will involve evaluating the proposed QIRL on diverse
datasets to assess its generalization abilities and extending its
application to joint multi-agent motion forecasting scenarios.
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