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Abstract—Accurate and robust localization is a critical com-
ponent in intelligent vehicles, playing a significant role in route
planning and efficient navigation. There’s a rising trend towards
affordable positioning solutions. These use common vehicular
sensors like GPS, IMU, and cameras to improve navigation
accuracy. This paper presents a comprehensive, low-cost lo-
calization framework with a lightweight map. The framework
introduces two key novelties. Firstly, we propose a method known
as the Cross-Dimensional Lane and Pose Estimator (CDLPE),
designed to effectively resist scenarios with poor satellite signals.
In addition, our system delivers a reliable localization service by
effectively integrating matching results and capitalizing on the
benefits of the sensors used, coupled with an understanding of
the environment. We have verified the robustness of our method
under different driving scenarios. Compared to the classical
Iterative Closest Point (ICP) algorithm, the lane identification
accuracy has improved by 4.42% and 9.23% during normal
and weak satellite signal conditions, respectively. Videos in:
https://youtu.be/DsYXSeWQhWc

Fig. 1: Test Vehicle Configuration and Lightweight Map

I. INTRODUCTION

Localization is a critical technology that helps intelligent
vehicles determine their precise position and orientation within
the environment. This process is essential for path planning,
obstacle avoidance, and ensuring safe and efficient navigation.
Vehicle localization typically involves the integration of var-
ious sensors such as Global Navigation Satellite System
(GNSS), LiDAR, radar, and cameras, along with sophisticated
algorithms to process sensor data, and may also utilize map
data and other information sources to accurately determine
the vehicle’s position and orientation. In recent years, the
approach of using high-precision maps and Lidar for auxiliary
positioning has been quite common due to its high accuracy,
with Nayak et al. [14] serving as a prime illustration. However,
due to the high maintenance cost of large-scale 3D high-
precision maps, and with the rapid improvement of image-
based algorithm accuracy due to the development of deep
learning, people are increasingly inclined to use a low-cost

positioning solution that combines lightweight maps such as
Poggenhans et al. [15] and images with other commonly used
vehicular sensors such as GPS, IMU for precise positioning.
Each sensor possesses distinct attributes: GNSS is effective in
open spaces, IMU consistently computes position, orientation,
and speed but is prone to integration drift, and cameras
necessitate road features and a good field of view. Maps
not only assist in positioning but also provide prior driving
information, significantly aiding in the integration of data from
all sensors.
This paper introduces a robust and precise localization system
for intelligent vehicle navigation in both urban and highway
settings. Our work adroitly amalgamates data from an ar-
ray of sensors with environmental knowledge and employs
an innovative map matching algorithm on a lane-level light
map. The system is designed to consistently provide accurate
location services even in complex scenarios such as tunnels,
intersections, and multi-layered roads. In summary, our main
contributions are as follows:
1. We present an accurate and low-cost complete localization
framework for intelligent vehicle, which effectively integrates
map-matching results and leverages the advantages of multiple
sensors with the understanding of environment.
2. We have developed a map matching algorithm that effec-
tively resists poor GNSS signal scenarios and significantly
enhances the accuracy of lane association. This method, called
the Cross-Dimensional Lane and Pose Estimator (CDLPE),
represents a substantial improvement in the field.
3. Our localization system has been rigorously tested on
vehicles navigating crowded urban streets on a daily basis.
The results demonstrate that our system consistently provides
promising localization outcomes across a variety of driving
scenarios.

II. RELATED WORKS

In this section, we contextualize our contributions within
relevant sub-fields.

A. Low-cost vehicular localization systems

With the advancement of computer vision, utilizing low-
cost cameras [5] is the direction of development for intelligent
vehicles. In earlier works, it’s common to utilize 3d point
cloud based high-definition map [33, 13, 26] in localization.
These works [32, 16, 34] usually transfer the image data to a
same format by specific algorithm firstly and than exploit rigid
registration algorithms such as Iterative Closest Point(ICP) [2]



to estimate pose. Due to the high maintenance costs of high-
definition maps, people [19, 27, 12] are now more inclined
to use semantics representation which are more robust against
illumination variation and seasonal changes [15] from data
in vector-format maps for positioning, such as lane marking,
curb, and so on. To leverage additional sensor inputs, some
learning-based method [21, 31] try to utilize a coarse GPS
location and gravity direction. However, multi-sensor fusion
by filter methods has been long leveraged to build accurate and
reliable localization systems [9, 7, 8]. Our work falls into the
category of vision-based localization, integrating vision sys-
tems in a loosely coupled manner with the inertial navigation
system (INS).

B. Map matching algorithms

An critical issue in map-matching methods is that the
detected feature can falsely correspond with a one stored on
a offline map in the lateral direction. To tackle this problem,
RANSAC algorithm [28, 20], probabilistic description [10, 23]
and tracking methods [24] are applied, and several researches
believe ego-lane identification is important, [25, 30] explored
lane-change detection system. [3, 9] divide the location task
into several parts, including road level, lane level and ego-
lane level localization. [1] proposed two distinct map matching
algorithms fused by EKF. [4, 6] present approaches for lane-
level localization in a coarse-to-fine fashion. Some works
[18, 11, 29] explored deep learning algorithms. Nonetheless,
the effectiveness of most skills is highly dependent on the
quality of perception and GNSS inputs in contributing to the
pose estimation process. Thus, this work introduces the Cross-
Dimensional Lane and Pose Estimator (CDLPE), a method
that optimally utilizes previous maps and visual data by cross-
dimensionally estimating the vehicle’s pose with different
algorithms and fusing the result adaptively, thereby bolstering
the system’s resilience in scenarios of poor visibility or weak
GNSS signals.

III. APPROACH

A. System Overview

Figure 2 shows the block diagram of the proposed vehicle
localization system. It utilizes a GPS, IMU, built-in wheel
speed sensor, single front camera, a digital map and the
planned route. The system combines GPS, dead reckoning
using INS feedback and wheel odometry, and multi-layer
map matching algorithms through an error state Kalman filter
(ESKF). The sensor fusion module uses a unicycle kinematic
model, and ESKF helps avoid parameter singularity and en-
sures their linearization. Like many public researches, the
system also uses a neural network for lane lines detection
and tracking, fitting the detected lines to a cubic curve, then
calibrated using multi-frame detection results. These curves
are cross-validated with the map to filter out unstable results,
playing a crucial role in map matching.

B. Cross-Dimensional Lane and Pose Estimator (CDLPE)

As shown in the Figure 2, CDLPE cross-dimensionally
estimates its ego-lane and pose in multiple modules. The
algorithm starts from matching at road level, which employs
a standard forward algorithm in Hidden Markov Modeling
(HMM). Then, in order to make better use of features from
different dimensions, the lane-level matching of features and
geometry are run independently with different algorithms.
Finally, the environment understanding module determine the
output pose as well as estimation confidence.

1) Lane-level Feature Matching: This module aims to rely
on rough initial positioning information, located road segment,
lane-level map data as a priori, and combined with perception
lane lines features to determine thes approximate location of
the vehicle. This module applies a histogram filter, which
approximates the posteriors by decomposing the state space
into finitely many spaces, and representing the cumulative
posterior for each region by a single probability value [22].
Its formula is as follows

p̄i,t =
∑
j

p(Xt = xi|ut, Xt−1 = xj)pj,t−1 (1)

pi,t = ηp(zt|Xt = xi)p̄i,t (2)

where pi,t represents the belief of each state xi at time t, ut is
the control input, and zt is the measurement vector. Equations
(1) and (2) correspond to the prediction and update step. As
the Figure 3(a) shows, the pi,t means the probability of that
vehicle is located in the lateral grid i.
In our work, the prediction step is performed based on the
knowledge of odometry velocity, meanwhile according to
Bayes theorem, the update step can be rewritten as

pi,t = ηp(zt|Xt = xi)p̄i,t = η
p(Xt = xi|zt)p(zt)

p(Xt = xi)
p̄i,t (3)

in which p(Xt = xi) =
dright
i −dleft

i

widthroad
, and p(Xt = xi|zt)

is calculated by fusing all the measurement probabilities.
Meanwhile, p(zt) can be merged into the normalization factor
η, thus we can derive

pi,t = η̄
p(Xt = xi|zt)
p(Xt = xi)

p̄i,t (4)

The problem is abstracted as a one-dimensional positioning
problem with discrete and limited status, where state xi means
the vehicle is located in the lateral grid i. The lane line position
data, given as points (latitude and longitude) on the map, is
fitted with a cubic polynomial to match the perception. As
Figure 3(a) shows, for ease of subsequent computations, the
leftmost lane line is used as the origin, adjusting the intercepts
accordingly, i.e di = di − d0.
Next, we introduce the process of prediction and update
corresponding to Equation (1) and (4).



Fig. 2: Overview of the Proposed Localization System Enhanced with CDLPE
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Fig. 3: (a) The grey dashed lines represent the lateral grids
D = {d1, d2, ..., dk} in the road, with each grid measuring
20 cm in width, and the red line shows the one-dimensional
coordinate system within the lane; (b) The blue and orange
bars represent probability distribution of prediction p̄i,t and
measurement p(xi|z1:m) respectively. The red curve denotes
final fitted Gaussian function.

a) The Prediction Step: The prediction step is to predict
on the new belief of the state with the historical distribution of
the filter and the motion model. Since the state only consider
horizontal localization, we calculate the new lateral position
of the car on the road at the current time t based on the
posterior distribution fitted at the time t− 1 and the odometry
information.

µi = µi−1 + velocityx ∗ δt (5)

p̄i,t ∼ N(µi, σ
2
i−1) (6)

which can be interpreted as a slight movement based on
the probability distribution within the road of the previous
moment.

b) The Update Step: There are only two states of a
vehicle in a certain grid, i.e., it is within the grid or not.
Therefore, in this solution, static binary Bayes filtering is used
to calculate the probability p(x′

i|z′1:m), which indicates the
confidence of vehicle in the ith grid under the observation

of z1 : zm at time t. For simplicity, we ignore the symbol t
representing the time:

lik = lik−1 + log
p(xi|zk)

1− p(xi|zk)
− log

p(xi)

1− p(xi)
(7)

in which l is the logistic probability, i.e. lik = log p(xi|z1:k)
1−p(xi|z1:k) .

After obtain lim by the above Equation (7), it can be derived
that the probability of vehicle is on the grid i under the
measurements z1 : zm at time t, as shown in the following
equation:

p(xi|z1:m) = 1− 1

1 + el
i
m

(8)

Taking the number of lanes detected on the left and right
side of the vehicle as an example of observation, we illustrate
the calculation of observation probability p(Xt = xi|zt) in
Equation (7). When the vehicle observes nleft lane lines on
the left and nright lane lines on the right through the camera,
the probability can be expressed by Equation (9):

p(xi|zNoL) =
1

4width

∫ dr
i

dl
i

[
1 + erf(

y − dmax(nl−1,0)√
2δ

)
]

∗
[
1− erf(

y − dmin(n−nr,n−1)√
2δ

)
]
dy

(9)

This method utilizes the concept of filtering and offers im-
pressive scalability. It allows for seamless integration of new
observational data into the existing model.

c) In-lane Pose Estimation: After deriving the grid prob-
ability distribution p(xi), the vehicle’s position must be de-
termined. In ambiguous situations, this is achieved using an
optimization solution. We employ the Ceres Solver, a non-
linear optimization library, to fit a standard Gaussian function
to our probability distribution, as Figure 3(b) shows. The cost
function can be articulated through the subsequent equations.

J =

i∑
(p(xi)− f(x)) (10)



Fig. 4: The map and perceived red lines under the current
vehicle pose assumption.

s.t. f(x) = exp(− (x− µ)2

2var2
) (11)

This estimated pose serves as both the output for in-lane
positioning and the prior position for the next moment’s
prediction process.

2) Lane-level Geometry Matching: This section focuses on
achieving centimeter-level positioning and maintaining stabil-
ity based on geometric relationships, unaffected by accidental
incorrect ego-lane determination in feature matching. The plan
is divided into two parts: the first part addresses the data
association problem between perceived and prior map lane
lines data. The second part obtains accurate pose optimization
based on the established association relationship.

a) Data Association: This part abstracts the data as-
sociation problem between perception and map lane lines
into a classic maximum matching set solving problem of a
weighted bipartite graph. It calculates weights from several
lane lines data features that affect positioning accuracy and
assigns solutions as a whole to ensure the optimal matching
set is directly obtained during the data association stage.
The key point is to identify and eliminate erroneous data
effectively. The weight of the i-th group of matching pairs
can be calculated by Equation (12)

weighti = ci ∗
∑
j

(1− errori,j∑
i errori,j

) (12)

where j represents the type of error, and ci is the correction
coefficient, which is related to the properties of the perception-
acquired lane line itself in the i-th group of matching pairs.
After obtaining the association weight matrix, the Hungarian
matching algorithm is directly used to solve it to obtain
the maximum matching set. This solution can maintain good
correlation accuracy when there are partial misdetections in the
perception data such as ground cracks or potential problems
in the map such as temporary road repairs.

b) Pose Optimization: For vehicle pose correction using
perception and map data matching results, it’s necessary to
convert the map lane lines data to the body system, which in-
volves projection transformation. Equidistant and equiangular
projections can both introduce errors. As the vehicle moves
further from the initial reference point, these projection errors

increase. To mitigate this, our approach uses the vehicle’s
current position as the reference point for converting map lane
lines data to the body system, as shown in Figure 4. Then, we
solve the pose error based on the data association results of
the map data and the perceived lane lines equation in the body
system. The state to optimize is the error of the vehicle pose,
defined as

X = [∆xbody,∆ybody,∆yaw]T (13)

, in which ∆xbody , ∆ybody and ∆yaw represents lateral,
longitude and orientation error respectively. The residual term
comes from the fitness of the curve equation of the lane
lines perceived from the points from the prior map as well as
the Mahalanobis distance between the map and the perceived
object. This non-linear problem can be formulated as

min
X

1

2

m∑
j

m∑
i

pji (fitness errorji (X)2) +
1

2
p(X2)

+
1

2

l∑
k

pk(obj errk(X)2)

(14)

s.t. fitness errorji (X) = f(xj
i,map)− yji,map (15)

Xlower < X < Xupper (16)

where p is the robust kernel function in optimization, f is
the detected cubic curve function, and obj error is used to
evaluate the matching degree of other detected static features
in the map such as stop lines, etc.

3) Environment Understanding: This module consists of
uncertainty estimation and scene recognition. Uncertainty es-
timation calculates the value UncV for the fusion algorithm
to determine the variance while fusing matching result. This
uncertainty stemming from matching uncetainty and map
inaccuracy, as (17) shows.

UncV =λ ∗ (UncVgeometry + UncVfeature)

+ UncVmap

(17)

UncVfeature = 1∑
i p(i)

∑
i p(i)(dopt − di)

2 indicates the
uncertainty in the estimated probability distribution across
road grids in feature matching. On the other hand,
UncVgeometry represents the variance value of the optimized
[longitude, latitude, yaw]T in geometry matching module,
given by the Ceres solver in the tangent space. Note that the
position with lower uncertainty will be output as matching
result.
Currency issues like changes in lanes, width, and heading are
common in maps. To detect potential anomalies, we measure
this uncertainty value by the difference between confident
failed visual detection results and the map data.

UncVmap =
1

Nfailed

Nfailed∑
i

( abs(yawi − yawmap)

scale factor ∗ velocity

+
abs(offseti − offsetmap)

width

) (18)



Fig. 5: The Coverage of Beijing Test Dataset

As a supplement to the use of UncV , the scene recognition
identifying whether it is a scene that have a significant impact
on map matching or need a special strategy in fusion.

In essence, the road determination module outputs the
vehicle’s current located road and recommendation position,
useful for navigation planning and deviation assessment in ex-
treme scenarios. The lane-level feature matching calculates the
vehicle’s probability distribution within the road grids, using
Bayesian methods based on determined road and perception
data. It estimates the vehicle’s approximate location, mitigating
lane matching errors during significant GPS deviation by lane
lines features. The lane-level geometry matching focuses on
producing precise and stable within-lane pose, which will not
be influenced by errors in feature-based matching after itself
being initialized successfully. The environment understanding
module not only guarantees the algorithm’s applicability in
complex road networks, but also provides uncertainty infor-
mation for fusion algorithm to choose estimated pose from
matching.

IV. EVALUATION RESULTS

A. Experimental Setup and Preliminary Performance

Our algorithm is road-tested daily within the city by our
intelligent vehicles. Each test vehicle is equipped with a front
camera, GNSS receiver, IMU and vehicle’s wheel odometry.
To construct the ground truth value, we have additionally
assembled NovAtel devices.The test set consists of approxi-
mately 300km of data in Beijing, shown in Figure 5. Due to the
lack of ground truth in some scenarios without GNSS signals,
we have provided a preliminary performance estimate based
on manual statistics, as shown in Table I below. Qualitative
and quantitative experiment will further evaluate the accuracy
and robustness of the method.

Scenario Distance Lateral RMS < 1.0m
Highway/Expressway 145km 0.999

Urban with servere shelter 42km 0.988
Tree-lined road 23km 0.992

Tunnel 53km 1.0
Under stacked road 25km 0.975

Ordinary or open urban road 98km 0.994

TABLE I: The performance of various scenarios in Beijing
testset

((a)) Lateral RMS Errors

((b)) Longititude RMS Errors

Fig. 6: Comparison of errors set by different experimental
methods

B. Quantitative Analysis

We benchmark the performance of our localization approach
against the classical ICP method [17] on our Beijing test set.
Based on the perception detection of lane lines points and
map lane lines sample points, we used ICP for matching,
replacing the CDLPE module. For fairness, the type of lane
line is used as an expanded dimension in the ICP method.
To clearly illustrate the contributions of various sources, we
present the test results in four distinct modes. 1) Our system
with RTK and ICP; 2) Our system with RTK and CDLPE;
3) Our system with GPS and ICP; 4) Our system with GPS
only and CDLPE. In Table II ,we show the quantitative results
in both regular and weak GNSS roads. Meanwhile, in order
to display the evaluation accuracy more intuitively, we have
randomly selected a continuous 1200-second data segment
from the regular scenes. The Figure 6 illustrates the respective
results of the lateral and longitudinal errors of the above four
methods when the sampling rate is reduced from 20Hz to 1Hz.

C. Ablation Study

The experimental data in the table shows that our algorithm
is very robust under both ordinary GPS and weak GNSS
scenarios, which is the benefit of our multi-dimensional es-
timation. In order to further illustrate the role of environment
understanding, we have separately designed the following ex-
periments based on ordinary GPS: 1) Our system with CDLPE
excluding geometry matching. 2) Our system with CDLPE
excluding feature matching. 3) Our system with CDLPE. We
tested on the Beijing dataset, uniformly sampled 1000 points
from the error distribution of the results of each method, and
plotted them in two dimensions. As Figure 7 shows, it is clear
that our method effectively integrates information and models
from different dimensions.



Scenes Method Lateral RMS(m) Longitudinal RMS(m) Yaw(deg) Ego Lane
max mean max mean mean Accuracy

Regular RTK + ICP 4.942 0.544 4.863 0.871 1.740 0.9530
RTK + CDLPE 0.746 0.175 1.794 0.414 0.692 0.9965
GPS + ICP 7.540 0.746 5.008 1.424 2.658 0.9312
GPS + CDLPE 1.598 0.213 2.379 0.631 0.978 0.9877

Weak RTK + ICP 11.214 1.565 13.621 1.424 3.138 0.8426
GNSS RTK + CDLPE 1.174 0.289 4.658 1.296 1.025 0.9641

GPS + ICP 12.057 1.947 15.362 1.876 4.357 0.8206
GPS + CDLPE 1.975 0.485 5.680 1.684 1.687 0.9394

TABLE II: The comparison of different localization methods based on pose and lane accuracy.

((a)) Distribution of 2-dimensional RMS Error

((b)) Lateral RMS Error

Fig. 7: Errors of different modules in the ablation experiment.

D. Qualitative Results

An accurate localization ensures that the projection of map
elements on image is completely consistent with the semantic
perception. Projection results in different scenes in test set
are shown in Figure 8. Sub-figures d, e, f depict a typical
turning process, where longitudinal errors become lateral ones
and GNSS has a margin of error. Our algorithm ensures a
smooth and accurate correction at intersections, preventing
wrong lane placements, by utilizing matching result in mul-
tiple dimensions. Sub-figures g and h represent weak GNSS
signal scenarios like tunnels and underpasses. Despite GNSS
drift (light blue block), our stable fused result (green block)
is achieved through scene understanding and map-matching
verification.

V. CONCLUSION AND FUTURE WORKS

In this paper, we present a comprehensive, end-to-end,
vision-based vehicle localization framework. Our framework
is further bolstered by a novel map-matching algorithm we’ve
developed, named Cross-Dimensional Lane and Pose Esti-
mator (CDLPE). We have showcased the reliability of our
algorithm in a variety of challenging driving conditions. Fur-
thermore, our high level of accuracy and resilience to weak

signal interference has been confirmed through experimental
comparisons of pose and lane accuracy under varying GNSS
signal strengths. Lightweight maps often have limitations in
terms of absolute accuracy. In future work, it is necessary for
the algorithm to estimate these mapping errors in real-time for
precise positioning.
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