
Benchmarking Reinforcement Learning
for Network-level Coordination of Autonomous

Mobility-on-Demand Systems Across Scales
Luigi Tresca∗†, Daniele Gammelli†, James Harrison‡, Gioele Zardini†§, and Marco Pavone†

∗Energy Department, Politecnico di Torino, Turin, Italy, luigi.tresca@polito.it
†Department of Aeronautics and Astronautics, Stanford University, USA, {ltresca, gammelli, zardini, pavone}@stanford.edu

‡Google DeepMind, San Francisco, CA, USA, jamesharrison@google.com
§Laboratory for Information and Decision Systems, MIT, Cambridge, MA, USA, gzardini@mit.edu

Abstract—As urbanization intensifies, relying on private cars
for private mobility becomes increasingly unsustainable, prompt-
ing the exploration of alternative transit solutions. This paper
focuses on autonomous mobility-on-demand (AMoD) systems,
which leverage fleets of autonomous vehicles (AVs) controlled via
sophisticated algorithms to deliver on-demand mobility services.
Such systems are promising given their ability to react and
predict fluctuating spatio-temporal travel demand patterns, but
raise several computational challenges associated with large fleets
and the complex networks on which they operate. This paper
introduces a novel decision-making framework that integrates
optimization strategies with data-driven techniques. In particular,
our approach enables effective learning of rebalancing policies
via deep reinforcement learning, ensuring close-to-optimal per-
formance, computational tractability, and generizability across
different urban settings. Furthermore, it provides an interface for
practitioners to learn and evaluate policies with custom fidelity
requirements, all the way from heuristic-based approaches, to
microscopic traffic simulators. Finally, we showcase the proper-
ties of the framework on the real-world case studies of NYC,
USA, Chengdu, China, and Luxembourg.

I. INTRODUCTION

Recent urbanization trends have resulted in increased travel
and related externalities, with cities accounting for over 78%
of the world’s energy consumption, and for over 60% of
the global greenhouse gas emissions (30% of which is pro-
duced by transportation, in the USA) [1]. Congestion lev-
els worldwide are escalating, causing 8.8 billion hours of
extra travel time in the USA alone (equivalent to over a
week of vacation for the average US commuter). In this
context, relying on private cars for personal mobility is becom-
ing increasingly impractical and unsustainable. Ride-hailing
services have emerged as an alternative, offering mobility-
on-demand (MoD) services, raising concerns related to the
exploitation of public resources, equity, profitability, and,
importantly, scalability. In particular, the travel demand for
such services is spatio-temporally asymmetrically distributed
(e.g., commuting toward downtown in the morning), making
the overall operations imbalanced and extremely sensitive to
disturbances [2]. In this context, technological advances in the
field of autonomous driving offer a new mobility paradigm:
autonomous mobility-on-demand (AMoD). An AMoD system
consists of a fleet of autonomous vehicles (AVs) that pick up
passengers, and transport them to their destination. A manager
controls the fleet by simultaneously assigning passengers to

AVs, routing them, and rebalancing the fleet by relocating
customer-free AVs to realign their geographical distribution
with transportation demand (thereby solving the aforemen-
tioned issue). AMoD services promise two main benefits: they
increase the supply of drivers to match increasing demand,
and drastically reduce transportation costs [2]. However, such
services also entail controlling thousands of AVs in complex,
congested networks, raising numerous challenges at the in-
terface of computational scalability of control schemes and
system performance. In this work, we propose a hierarchical
decision-making framework to centrally control AMoD sys-
tems. Specifically, our framework blends optimization-based
methods and data-driven approaches by exploiting the main
strengths of graph neural networks (GNNs), reinforcement
learning (RL), and classical operations research tools. We
show that our framework exhibits a number of desirable
properties, including computational tractability, generalizabil-
ity, and close-to-optimal performance. Furthermore, we show
the ability of the proposed approach to interface with policy
evaluation tools of varying fidelity, starting from heuristic-
based ones, all the way to microscopic traffic simulators.
Related Work. Existing literature on the real-time coordi-
nation of AMoD systems can be classified into three cate-
gories. The first category applies simple rule-based heuris-
tics [3, 4] that, although efficient, can rarely yield close-
to-optimal solutions. The second category designs Model
Predictive Control (MPC) approaches based on network flow
models [5, 6], whereby an embedded open-loop optimization
problem is solved at each time step to yield a sequence
of control actions over a receding horizon, but only the
first control action is executed. These embedded optimization
problems are typically formulated into large-scale linear or
integer programming problems, which may not scale well
for complex AMoD networks. The third and most relevant
category for this work employs learning-based approaches to
devise efficient algorithms without significantly compromising
optimality [7, 8, 9]. Guériau et al. [7] developed RL-based
decentralized approaches through a Q-learning policy; Holler
et al. [8] developed a cooperative multi-agent approach for
order dispatching and vehicle rebalancing using Deep Q-
Networks and Proximal Policy Optimization; Fluri et al. [9]
developed a cascaded Q-learning approach to operate AMoD
systems in a centralized manner. Overall, although the afore-



Fig. 1. An illustration of the three-step framework for the proposed AMoD control strategy. Given the current distribution of idle vehicles and travel requests
(stick figures), the control strategy is defined by: (1) dispatching idle vehicles to specific trip requests by solving a matching problem, (2) computing an action
(i.e., the desired distribution of idle vehicles) using some policy, and (3) translate it into actionable rebalancing trips to minimize the overall rebalancing cost.

mentioned RL-based works cover a wide range of algorithms,
there lacks a discussion on how to (i) combine the benefits of
learning-based and optimization-based methods, and (ii) define
neural network architectures able to exploit the graph structure
present in urban transportation networks.
Contributions. Concretely, the contributions of this work are
threefold, and build on previous efforts presented in [10, 11,
12]. First, we present a novel hierarchical policy framework
that leverages the specific strengths of direct optimization
and graph network-based RL. Second, we show that our
approach is highly performant, scalable, and robust to changes
in operating conditions and network topologies, across simu-
lators of different fidelity. Crucially, we demonstrate that our
approach outperforms classical optimization-based techniques,
domain-specific heuristics, and pure end-to-end RL. Finally,
motivated by the need to democratize research efforts in this
area, we move the first steps toward the creation of publicly
available benchmarks, datasets, and simulators for network-
level coordination of MoD systems and release code1 to (i)
provide openly accessible simulation platforms, and (ii) create
a common validation process and allow direct comparison
between different methodologies.

II. METHODOLOGY

In this section, we present a methodology to control the op-
erations of AMoD systems. In particular, we first introduce the
notation and provide a problem description, and then describe
a three-step approach to solve it integrating optimization and
data-driven techniques.
Problem Definition. An AMoD operator coordinates M robo-
taxis to provide on-demand mobility services on a transporta-
tion network represented by a graph G = (V, E), where
V represents the set of stations (e.g., pick-up or drop-off
locations) and E represents the set of links connecting two
adjacent stations. Let Nv = |V| denote the number of stations.
The time horizon is discretized into a set of discrete intervals
I = {1, 2, . . . , T} of a given length ∆T . AVs traveling
between station i ∈ V and station j ̸= i ∈ V starting from
each time step t are controlled by the operator to follow the
shortest path, with a travel time of τ tij ∈ Z+ time steps
and a travel cost of ctij (e.g., as a function of travel time).
Passengers make trip requests at each time step. The requests

1Code available at: https://github.com/StanfordASL/RL4AMOD

with origin-destination (OD) pair (i, j) ∈ V × V submitted
at time step t ∈ I are characterized by demand dtij and price
ptij . With such trip requests, the operator dynamically matches
passengers to vehicles, and the matched vehicles will deliver
passengers to their destinations. Idle vehicles not matched with
any passengers will be controlled by the operator to either
stay at the same station or rebalance to other stations. We
denote xt

ij ∈ N as the passenger flow, i.e., the number of
passengers traveling from station i to station j at time step t
that are successfully matched with a vehicle, and ytij ∈ N as
the rebalancing flow, i.e., the number of vehicles rebalancing
from station i to station j at time step t. Thus, the goal of
a service operator is to compute passenger and rebalancing
flows to optimize a given performance metric.
Proposed Framework. We formulate the AMoD control
problem as a hierarchical, three-step decision-making process:
demand-vehicle matching, vehicle rebalancing via RL, and
post-processing (Figure 1). This three-step framework, as
shown in the rest of this section, has the advantage of reducing
the action space from N2

v to Nv , since the learned policy
defines an action at each node as opposed to along each
OD pair (as in most of the literature). In the following,
we provide a detailed description of the framework. First,
when matching, the operator assigns vehicles to customers and
obtains passenger flows {xt

ij}i,j∈V by solving the following
assignment problem:

max
{xt

ij}i,j∈V

∑
i,j∈V

xt
ij(p

t
ij − ctij) (1a)

s.t. 0 ≤ xt
ij ≤ dtij , i, j ∈ V, (1b)∑

j∈V
xt
ij ≤ M t

i , i ∈ V, (1c)

where the objective function (1a) represents the profit of
passenger assignment calculated as the difference between
revenue and cost, the constraint (1b) ensures that the passenger
flow is non-negative and upper-bounded by the demand, and
the constraint (1c) represents that the total passenger flow does
not exceed the number of vacant vehicles M t

i at station i at
time step t. Note that the constraint matrix of the assignment
problem (1) is totally unimodular [13], hence the resulting
passenger flows are integral as long as the demand is integral.

Second, the RL2 step aims to determine the desired idle

2Refer to the Appendix A for a detailed overview of common techniques.

https://github.com/StanfordASL/RL4AMOD


vehicle distribution atreb = {atreb,i}i∈V , where atreb,i ∈ [0, 1]
defines the percentage of currently idle vehicles to be rebal-
anced towards station i in time step t, and

∑
i∈V atreb,i = 1.

With desired distribution atreb, denote m̂t
i = ⌊atreb,i

∑
i∈V mt

i⌋
as the number of desired vehicles, where mt

i represents the
actual number of idle vehicles after matching in region i at
time step t. Here, the floor function ⌊·⌋ is used to ensure that
the desired number of vehicles is integral and always available
(
∑

i∈V m̂t
i ≤

∑
i∈V mt

i).
Third, the post-processing step converts the desired distribu-

tion into actionable rebalancing flows {ytij}i ̸=j∈V by solving
a minimal rebalancing-cost problem:

min
{yt

ij}i̸=j∈V∈N|V|×(|V|−1)

∑
i ̸=j∈V

ctijy
t
ij (2a)

s.t.
∑
j ̸=i

(ytji − ytij) +mt
i ≥ m̂t

i, i ∈ V,

(2b)∑
j ̸=i

ytij ≤ mt
i, i ∈ V, (2c)

where the objective function (2a) represents the rebalancing
cost, constraint (2b) ensures that the resulting number of
vehicles is close to the desired one, and constraint (2c) ensures
that the total rebalancing flow from a region is upper-bounded
by the number of idle vehicles in that region.

III. RESULTS

In this section, we showcase the properties of the described
methodology by studying real-world case studies. In particular,
our exploration is fourfold. First, we evaluate the performance
of our three-step controller with different metrics and compare
it with other baselines, including heuristics and optimization-
based policies. Second, we evaluate the ability of the learned
policies to generalize to new environments. Third, we provide
insights about the advantages in terms of computational effort
when comparing our policy with optimization-based strategies.
Finally, we showcase the ability of the proposed framework
to interface with simulators with varying fidelity levels, by
exploring the evaluation of policies leveraging microscopic
simulators. Please refer to Appendix C for a detailed descrip-
tion of the experimental setup.

A. Performance properties and baseline comparisons
To explore the performance of the proposed scheme, we

base our experiments on the morning commute demand in
popular areas of the city of New York, USA, and the
city of Chengdu, China. Both cities are divided into a 16-
dimensional (i.e. 4×4) grid, where each grid block represents
a station to which people can commute. The case study
is generated leveraging historic demand datasets, which are
converted to obtain the demand, travel time, and prices for
origin-destination (OD) pairs [14, 15]. The performance of
the learned policy is evaluated by three Key Performance
Indicators (KPIs) in addition to the reward function, including
(i) the served demand, defined as the total number of trips
satisfied by the AMoD control strategy, (ii) the rebalancing
cost, defined as the overall cost induced on the system by
the rebalancing policy, and (iii) the percentage deviation from

Fig. 2. Luxembourg network, including the original network (top) and the
aggregated network described as a complete digraph (bottom).

TABLE I
SYSTEM PERFORMANCE ON NEW YORK MACROSCOPIC SIMULATION

Reward Served Rebalancing
(%Dev. MPC-oracle) Demand Cost ($)

ED 30,746 (-13.4%) 8,770 7,990
RL (ours) 33,886 (-4.3%) 8,772 5,038
MPC-oracle 35,356 (0%) 8,968 4,296
RL-0Shot 33,397 (-5,7%) 8,628 4,743

MPC performance having oracle information of future system
states (%Dev. MPC). The performances of the policies for
NYC and Chengdu are reported in Tables I and II, respectively.
The proposed RL-based methodology can learn rebalancing
policies able to achieve close-to-optimal system performance
on both tasks. Specifically, RL performance is only 4.3%
(New York) and 4.3% (Chengdu) away from the oracle MPC
performance. Moreover, the RL-based policy is able to achieve
more than 9% (New York) and 17% (Chengdu) in profit
(reward) improvement while reducing the rebalancing cost by
about 37% (New York) and 70% (Chengdu) when compared
to the heuristic policy (ED).

B. Generalizability to new environments

To assess the generalization capabilities of the RL policy,
we measure transfer performance in the case of (i) inter-
city portability, (ii) service area expansion, (iii) irregular

TABLE II
SYSTEM PERFORMANCE ON CHENGDU MACROSCOPIC SIMULATION

Reward Served Rebalancing
(%Dev. MPC-oracle) Demand Cost ($)

ED 12,538 (-26,8%) 41,189 3,397
RL (ours) 15,167 (-9,8%) 40,578 1,063
MPC-oracle 16,702 (0.0%) 44,662 1,162
RL-0Shot 14,791 (-12,3%) 40,646 1,467



geographies, and (iv) changes in network granularity. Given
the space limitations, we discuss (i) in the main text and
refer the reader to Appendix C-C for (ii)-(iv). Specifically,
we study the extent to which policies can be trained in one
city and later applied to the other without further training
(i.e., zero-shot). Without any fine-tuning, the only way for
an effective rebalancing policy to emerge is if the agent has
learned a high-level, abstract, and generalizable understanding
of the system dynamics. Tables II and I show the adaptation
performance (RL-0Shot) when the NYC policy is applied in
Chengdu, and vice-versa, highlighting an interesting degree
of inter-city portability of both the rebalancing policies. In
particular, despite the significantly different mobility patterns
and topologies, the zero-shot policy shows only a slight drop in
performance when compared to its fully re-trained counterpart:
1.4% for New York and 2.5% for Chengdu, respectively.

C. Computational analysis
We compare the time required to compute a single rebal-

ancing decision for both the RL and the MPC approaches
at different transportation network dimensions, as reported in
Figure 5. The results show how the computational complexity
of RL-based policies scales linearly in the number of nodes
and graph connectivity, as opposed to optimization-based ones
which scale super-linearly in the number of edges [16].

D. Higher fidelity for policy evaluations via micro-simulations
Lastly, we apply the proposed RL-based framework to

a high-fidelity scenario developed within the SUMO simu-
lator [17]: a microscopic and continuous traffic simulation
package. In particular, we use a mesoscopic approach [18]
to model the traffic flow in the transportation network. We
model the AMoD system as a taxi fleet operating in the
city of Luxembourg, incorporating both exogenous traffic
and passenger demand. This approach aims to close the gap
between simulation and real-world traffic scenarios for the
AMoD system. Moreover, enhancing the fidelity of the traffic
environment also increases the stochasticity of the simulation.
In this context, the ability of learning-based methods to handle
stochastic environments makes them particularly suitable for
addressing the related decision-making challenges. We evalu-
ate the performance of the learning-based approach using the
same KPIs of the previous scenario, as reported in Table III.
In addition to the baselines used in the previous scenario, we
consider another heuristic policy (P1). Crucially, the micro-
simulation results confirm the takeaways from the previous
sections, with the RL-based policy achieving close-to-optimal
system profit, i.e., only 3.9% away from Oracle performance.
As in the previous scenario, the RL policy can reduce the re-
balancing cost by about 44% when compared to the ED policy,
highlighting a more efficient strategy, while outperforming the
P1 policy in terms of satisfied travel demand. Notably, both
the ED and RL policies fully satisfy the demand while the
MPC does not serve some unprofitable trips.

Figure 3 further compares the RL rebalancing strategy (blue
bar) with the ED policy (yellow bar) in satisfying the demand
(red) per each region of the network. The incoming vehicles
in a region are split into rebalanced vehicles (striped bar) and
vehicles that have served a trip demand. Figure 3 shows how

TABLE III
SYSTEM PERFORMANCE ON LUXEMBOURG MESOSCOPIC SIMULATION

Reward Served Rebalancing
(%Dev. MPC-oracle) Demand Cost ($)

ED 20,17 (-20,1%) 100% 8,85
P1 29,48 (-22,7%) 79% 3,38
RL (ours) 24,25 (-3,9%) 100% 5,00
MPC-oracle 25,24 (0%) 95% 2,40

Fig. 3. Bar plot showing the trip demand (dark red) and number of
incoming vehicles per region in the Luxembourg case study. The proportion of
rebalanced vehicles (striped bar) is superposed to the total number of incoming
vehicles. The proposed RL policy (blue bar) is compared to the ED policy
(yellow bar).

the RL-based policy is able to better close the gap between the
travel demand and the number of vehicles that are available in
a region by reducing the number of unnecessary rebalancing
trips, thus highlighting a more forward-thinking approach to
vehicle distribution. On the other hand, in accordance with
the findings presented in Table III, the ED policy is myopic
to future incoming vehicles in the region and proposes a
rebalancing strategy that is characterized by more frequent
rebalancing and higher associated costs.

IV. OUTLOOK

This work paves the way for four main future investigations.
First, we would like to continue assessing the potential of the
proposed framework with increasing levels of fidelity, all the
way to employing microscopic traffic simulators. Second, we
would like to extend the analysis of generalizability across
fidelity levels (e.g., macroscopic to mesoscopic and micro-
scopic), and characterize the arising trade-offs in performance
and computation. Third, we would like to involve multiple
communities by releasing benchmarks, in a quest to democra-
tize the algorithmic developments for the presented problems.
Finally, we aim to expand the portfolio of applications that
could benefit from the presented approach, including network-
based problems at large.

ACKNOWLEDGMENTS

D. Gammelli and G. Zardini are supported by the NASA
University Leadership Initiative (grant #80NSSC20M0163).
This article solely reflects the opinions and conclusions of its
authors and not any NASA entity.



REFERENCES

[1] D. o. E. a. S. A. United Nations, “68% of the world
population projected to live in urban areas by 2050,
says un,” UN, Tech. Rep., 2021. [Online]. Available:
https://www.un.org/development

[2] G. Zardini, N. Lanzetti, M. Pavone, and
E. Frazzoli, “Analysis and control of autonomous
mobility-on-demand systems: A review,” Annual
Review of Control, Robotics, and Autonomous
Systems, vol. 5, no. 1, pp. 633–658, 2022.
[Online]. Available: https://www.annualreviews.org/doi/
abs/10.1146/annurev-control-042920-012811

[3] M. Hyland and H.-S. Mahmassani, “Dynamic au-
tonomous vehicle fleet operations: Optimization-based
strategies to assign AVs to immediate traveler demand
requests,” Transportation Research Part C: Emerging
Technologies, vol. 92, pp. 278–297, 2018.

[4] M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li,
“A general framework for modeling shared autonomous
vehicles with dynamic network-loading and dynamic
ride-sharing application,” Computers, Environment and
Urban Systems, vol. 64, pp. 373 – 383, 2017.

[5] R. Zhang and M. Pavone, “Control of robotic Mobility-
on-Demand systems: A queueing-theoretical perspec-
tive,” Int. Journal of Robotics Research, vol. 35, no. 1–3,
pp. 186–203, 2016.

[6] R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec,
and M. Pavone, “Data-driven model predictive control
of autonomous mobility-on-demand systems,” in Proc.
IEEE Conf. on Robotics and Automation, Brisbane, Aus-
tralia, May 2018.

[7] M. Guériau, F. Cugurullo, R. Acheampong, and I. Dus-
paric, “Shared Autonomous Mobility on Demand: A
learning-based approach and its performance in the pres-
ence of traffic congestion,” vol. 12, no. 4, pp. 208–218,
2020.

[8] J. Holler, R. Vuorio, Z. Qin, X. Tang, Y. Jiao, T. Jin,
S. Singh, C. Wang, and J. Ye, “Deep reinforcement learn-
ing for multi-driver vehicle dispatching and repositioning
problem,” in IEEE Int. Conf. on Data Mining, 2019.

[9] C. Fluri, C. Ruch, J. Zilly, J. Hakenberg, and E. Frazzoli,
“Learning to operate a fleet of cars,” in Proc. IEEE Int.
Conf. on Intelligent Transportation Systems, 2019.

[10] D. Gammelli, K. Yang, J. Harrison, F. Rodrigues,
F. C. Pereira, and M. Pavone, “Graph neural network
reinforcement learning for autonomous mobility-on-
demand systems,” in Proc. IEEE Conf. on Decision and
Control, 2021. [Online]. Available: https://arxiv.org/abs/
2104.11434

[11] D. Gammelli, K. Yang, J. Harrison, F. Rodrigues,
F. Pereira, and M. Pavone, “Graph meta-reinforcement
learning for transferable autonomous mobility-on-
demand,” in ACM Int. Conf. on Knowledge
Discovery and Data Mining, 2022. [Online]. Available:
https://arxiv.org/abs/2202.07147

[12] D. Gammelli, J. Harrison, K. Yang, M. Pavone, F. Ro-
drigues, and P. C. Francisco, “Graph reinforcement learn-
ing for network control via bi-level optimization,” in Int.

Conf. on Machine Learning, 2023.
[13] G. L. Nemhauser, Integer programming and combinato-

rial optimization. Springer, vol. 191.
[14] Taxi & Limousine Commission. (2013) New York City

Taxi & Limousine Commission Trip Record Data. See
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

[15] Didi Chuxing Technology Co. (2016) Didi Chuxing Gaia
Initiative. Available at https://outreach.didichuxing.com/
research/opendata/en/.

[16] J. van den Brand, “A deterministic linear program solver
in current matrix multiplication time,” in ACM-SIAM
Symp. on Discrete Algorithms, 2020.

[17] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann,
Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel,
P. Wagner, and E. Wießner, “Microscopic traffic
simulation using sumo,” in The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[18] N. G. Eissfeldt, “Vehicle-based modelling of traffic . the-
ory and application to environmental impact modelling,”
Ph.D. dissertation, Universität zu Köln, 2004.

[19] D. Gammelli, I. Peled, F. Rodrigues, D. Pacino, and
F. Pereira, “Estimating latent demand of shared mobility
through censored gaussian processes,” Transportation
Research Part C: Emerging Technologies, vol. 120, 2020.

[20] T.-N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” in Int. Conf. on
Learning Representations, 2017.

[21] J. Rawlings and D. Mayne, Model predictive control:
Theory and design. Nob Hill Publishing, 2013.

[22] T. Van de Wiele, D. Warde-Farley, A. Mnih, and V. Mnih,
“Q-learning in enormous action spaces via amortized
approximate maximization,” arXiv:2001.08116, 2020.

[23] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic
optimization applied to energy planning,” Mathematical
Programming, vol. 52, no. 1, pp. 359–375, 1991.

[24] J. Dumouchelle, R. Patel, E. B. Khalil, and M. Bodur,
“Neur2sp: Neural two-stage stochastic programming,”
arXiv:2205.12006, 2022.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, 1st ed. MIT Press, 1998.

[26] S. Fujimoto, D. Meger, D. Precup, O. Nachum, and S. S.
Gu, “Why should i trust you, bellman? the bellman error
is a poor replacement for value error,” arXiv:2201.12417,
2022.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer et al., “Pytorch:
An imperative style, high-performance deep learning
library,” arXiv preprint arXiv:1912.01703, 2019.

[28] IBM, ILOG CPLEX User’s guide, IBM ILOG, 1987.
[29] C.-F. Daganzo, “An approximate analytic model of

many-to-many demand responsive transportation sys-
tems,” Transportation Research, vol. 12, no. 5, pp. 325–
333, 1978.

[30] J. Song, Y. Wu, Z. Xu, and X. Lin, “Research
on car-following model based on sumo,” in The 7th
IEEE/International Conference on Advanced Infocomm
Technology, 2014, pp. 47–55.

https://www.un.org/development
https://www.annualreviews.org/doi/abs/10.1146/annurev-control-042920-012811
https://www.annualreviews.org/doi/abs/10.1146/annurev-control-042920-012811
https://arxiv.org/abs/2104.11434
https://arxiv.org/abs/2104.11434
https://arxiv.org/abs/2202.07147
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://outreach.didichuxing.com/research/opendata/en/
https://outreach.didichuxing.com/research/opendata/en/
https://elib.dlr.de/124092/


[31] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo
traffic (lust) scenario: 24 hours of mobility for vehicular
networking research,” in 2015 IEEE Vehicular Network-
ing Conference (VNC), 2015, pp. 1–8.

[32] L. Codeca, R. Frank, S. Faye, and T. Engel, “Luxem-
bourg sumo traffic (lust) scenario: Traffic demand evalua-
tion,” IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 2, pp. 52–63, 2017.

[33] C. Ruch, J. Gächter, J. Hakenberg, and E. Frazzoli, “The+
1 method: model-free adaptive repositioning policies
for robotic multi-agent systems,” IEEE Transactions on
Network Science and Engineering, vol. 7, no. 4, pp.
3171–3184, 2020.

[34] R. Zhang, F. Rossi, and M. Pavone, “Model predictive
control of Autonomous Mobility-on-Demand systems,”
in Proc. IEEE Conf. on Robotics and Automation,
Stockholm, Sweden, May 2016. [Online]. Available:
http://arxiv.org/pdf/1509.03985.pdf

APPENDIX A
METHODOLOGY

In this section, we discuss RL components and network
architectures in greater detail.

A. Reinforcement Learning Details
We formulate the AMoD rebalancing problem as an MDP.

Specifically, we attempt to learn a behavior policy to select the
desired distribution of idle vehicles, as introduced in Section
II, by defining the following MDP:

Mreb = (Sreb,Areb, Preb, rreb, γ). (3)

In what follows, we define each of the elements describing the
MDP for the AMoD rebalancing problem.

Action Space (Areb): Given a number of available vehicles
Ma ≤ M , and their current spatial distribution between the
Nv stations, we consider the problem of determining the
desired idle vehicle distribution atreb. Specifically, the proposed
behavior policy will have the task of describing a probability
distribution over stations, indicating the percentage of idle
vehicles to be rebalanced in each station.

Reward (rreb): We define the reward function in the MDP
from the perspective of an AMoD operator. That is, we
express our objective to recover behavior policies able to
maximize travel demand satisfaction and provider profit while
minimizing the cost of unnecessary vehicle trips in the system.
Specifically, each trip between two stations i, j at time t will
be characterized by a price ptij and a cost ctij , with ptij = 0
in case of rebalancing trips. We can naturally express this
objective through the following reward function:

rreb =
∑
i,j∈V

xt
ij(p

t
ij − ctij)−

∑
(i,j)∈E

ytijc
t
ij , (4)

where, as introduced in Section II, we denote the passenger
and rebalancing flows as xt

ij and ytij , respectively.
State Space (Sreb): We define the state in the rebalancing

MDP to contain the information needed to determine proactive
rebalancing strategies. Specifically, this will require knowledge

of the structure of the transportation network through its
adjacency matrix A, together with additional station-level in-
formation by means of a feature matrix X. In our experiments,
we choose the adjacency matrix A to describe a transportation
network where each station is connected to its spatially adja-
cent regions, such that all neighboring areas are connected
by an edge. Moreover, we choose the feature matrix X to
be a collection of three main sources of information. Firstly,
we characterize the MoD system by the current availability
of idle vehicles in each station mt

i ∈ [0,M ],∀i ∈ V . Given a
planning horizon T , we also consider the projected availability
of idle vehicles {mt

′

i }t′=t,...,t+T , where this is estimated
based on previously assigned passenger and rebalancing trips.
Secondly, an effective rebalancing strategy will also depend on
both current dtij and estimated {d̂t

′

ij}t′=t,...,t+T transportation
demand between all stations. In this work, we assume to have
access to a noisy and unbiased estimate of demand in the
form of the rate of the underlying time-dependent Poisson
process describing travel behavior in the system, although this
could come from a predictive model such as [19]. Lastly, we
also include provider-level information such as trip price ptij
and cost ctij . By means of this definition of the state space,
we provide the behavior policy with meaningful information
for it to capture statistics of the current and estimated future
state of the MoD system, together with operational provider
information and performance.

Dynamics (Preb): The dynamics in the rebalancing MDP
describe both the stochastic evolution of travel demand pat-
terns, as well as how rebalancing decisions influence future
state elements, such as the availability and distribution of idle
vehicles. Specifically, the evolution of travel demand between
stations dtij is independent of the rebalancing action and
follows a time-dependent Poisson process (in our experiments,
estimated from real trip travel data). On the other hand, some
of the state variable’s transitions deterministically depend on
the chosen action. For example, the estimated availability
{mt

′

i }t′=t,...,t+T is uniquely defined as the sum of the current
availability mt

i together with the projected number of incoming
vehicles at time t′ (from both passenger and rebalancing
flows), minus the vehicles currently chosen to be rebalanced.
Finally, state variables related to provider information, such as
trip price ptij and cost ctij are assumed to be externally decided
and known beforehand (hence, independent from the actions
selected by the behavior policy).

B. Neural Network Architecture
Despite our hierarchical policy framework is designed to

be agnostic to the choice of neural network architecture, we
argue that permutation-invariant computational models oper-
ating on irregular graphs—such as those enabled by GNNs—
pair naturally with the predominant modeling techniques in
transportation engineering broadly and AMoD in particular.
At the heart of our claim is the observation that areas in a
city, just like nodes in a graph, do not have a natural order.
Instead, graphical representations of transportation systems are
naturally defined by node and edge properties such as demand
in a region or travel time between regions. An effective control
policy should not be affected by the order in which we

http://arxiv.org/pdf/1509.03985.pdf


consider the areas, but rather solely by the properties (i.e.
attributes) of those areas. We first introduce the basic building
blocks of our graph neural network architecture.

Given a graph G = (V, E), where V = {vi}i=1:Nv
and E =

{ek}k=1:Ne
respectively define the sets of nodes and edges of

G, most current graph neural network models can be seen as
methods attempting to learn a permutation-invariant function
taking as input (i) a D-dimensional feature description xi for
every node i (typically summarized in a Nv×D feature matrix
X), (ii) a representative description of the graph structure
in matrix form A (typically in the form of an adjacency
matrix), and produce an updated representation x′

i for all
nodes in the graph. An architecture of particular interest for
this work is the Graph Convolution Network (GCN) [20]. At
its core, a graph convolutional operator describes a parametric
function f(X,A) for efficient information propagation on
graphs. Specifically, a GCN defines the following propagation
rule:

X′ = f(X,A) = σ
(
D̂− 1

2 ÂD̂− 1
2XW

)
, (5)

where X is the Nv ×Dx feature matrix, A is the adjacency
matrix with Â = A + I and I is the identity matrix. D̂ is
the diagonal node degree matrix of Â, σ(·) is a non-linear
activation function (e.g., ReLU) and W is a matrix of learnable
parameters.
Policy. As introduced in Section II, a rebalancing action is
defined as the desired distribution of idle vehicles across all
Nv stations. Thus, in order for πθ(at|st) to define a valid prob-
ability density over actions, we devise the output of our policy
network to represent the concentration parameters α ∈ RNv

+ of
a Dirichlet distribution, such that at ∼ Dir(at|α) = πθ(at|st)
where Dir(·) denotes the Dirichlet distribution, and where the
positivity of α is ensured by e.g., a Softplus nonlinearity. Con-
cretely, the neural network used in our implementation consists
of one layer of graph convolution with skip-connections and
ReLU activations, whose output is then aggregated across
neighboring nodes using a permutation-invariant sum-pooling
function, and finally passed to three MLP layers of 32 hidden
units to produce the Dirichlet concentration parameters.
Value Function. The architecture used to define the value
function Vϕ(st) is in many ways identical to the architecture
used to characterize the policy. The main difference between
the two architectures lies in an additional global sum-pooling
performed on the output of the graph convolution. In this way,
the value function is able to aggregate information across all
nodes in the graph, thus computing a single value function
estimate for the entire network.

APPENDIX B
DISCUSSION AND ALGORITHMIC COMPONENTS

In this section, we discuss various elements of the proposed
framework, highlight correspondences and design decisions,
and discuss component-level extensions.

A. Computational efficiency

Consider solving the full nonlinear network flow problem
via direct optimization over a finite horizon (T timesteps),

which corresponds to a model predictive control [21] for-
mulation. How many actions must be selected? The number
of possible flows for a fully dense graph (worst case) is
Nv(Nv − 1). Thus, the worst-case number of actions to select
is TNv(Nv − 1); it is evident that for even moderate choices
of each variable, the complexity of action selection in our
problem formulation quickly grows beyond tractability.

While moderately-sized problems may be tractable within
the direct optimization setting, we aim to incorporate the
impacts of stochasticity, nonlinearity, and uncertainty, which
typically result in non-convexity. The reinforcement learning
approach, in addition to being able to improve directly from
data, reduces the number of actions required to those for a
single step. If we were to directly parameterize the naive
policy that outputs flows, this would correspond to Nv(Nv−1)
actions. For even moderate values of Nv , this can result
in millions of actions. It is well-known that reinforcement
learning algorithms struggle with high dimensional action
spaces [22], and thus this approach is unlikely to be successful.
In contrast, our hierarchical formulation requires only Nv

actions for the learned policy, while additionally leveraging
the beneficial inductive biases over short time horizons.

B. Goal-reaching constraint as value function

In our framework, the low-level minimum rebalancing cost
step is designed to minimize the distance between the realized
and desired vehicle distribution (i.e., obtained as output from
the RL policy). The role of this distance metric (and the
generated desired vehicle distribution) is to capture the value
of future reward in the greedy one-step inner optimization
problem. This is closely related to the value function in
dynamic programming and reinforcement learning, which in
expectation captures the sum of future rewards for a particular
policy. Indeed, under moderate technical assumptions, our
linear problem formulation with stochasticity yields convex
expected cost-to-go (the negative of the value) [23, 24].

There are several critical differences between our penalty
term and a learned value function. First, a value function in
a Markovian setting for a given policy is a function solely of
state. For example, in the minimum rebalancing cost step, a
value function would depend only on st+1. In contrast, our
value function depends on at, which is the output of a policy
that takes st as an input. Thus, the penalty term is a function of
both the current and desired vehicle distribution. Given this,
the penalty term is better understood as a local approxima-
tion of the value function, for which convex optimization is
tractable, or as a form of state-action value function with a
reduced action space (also referred to as a Q function).

The second major distinction between the penalty term and
a value function is particular to reinforcement learning. Value
functions in modern RL are typically learned via minimizing
the Bellman residual [25], although there is disagreement
on whether this is a desirable objective [26]. In contrast,
our policy is trained directly via gradient descent on the
total reward (potentially incorporating value function control
variates). Thus, the objective of this penalty method is better
aligned with maximizing total reward.



APPENDIX C
ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide additional details of the ex-
perimental setup and hyperparameters. All RL modules were
implemented using PyTorch [27] and the IBM CPLEX solver
[28] for the optimization problem.

A. Environment details

Macroscopic simulator. We use two case studies from the
cities of New York, USA, and Chengdu, China, whereby
we study a hypothetical deployment of taxi-like systems to
serve the peak-time commute demand in popular areas of
Brooklyn and Chengdu, respectively. The cities are divided
into geographical areas, each of which represents a station.
The case studies in our experiments are generated using trip
record datasets, which we provide together with our codebase.
The trip records are converted to demand, travel times, and
trip prices between stations. Here, we consider stochastic time-
varying demand patterns, whereby customer arrival is assumed
to be a time-dependent Poisson process, and the Poisson rates
are aggregated from the trip record data every 3 minutes. We
assume the stations to be spatially connected, whereby moving
vehicles from one station to the other requires non-trivial
sequential actions (i.e., vehicles cannot directly be repositioned
from one station to any other station, rather they have to adhere
to the available paths given by the city’s topology).

The following remarks are made in order. First, we assume
travel times are given and independent of operator actions.
This assumption applies to cities where the number of vehi-
cles in the fleet constitutes a relatively small proportion of
the entire vehicle population on the transportation network,
and thus the impact on traffic congestion is marginal. This
assumption can be relaxed by training the proposed RL model
in an environment considering the endogenous congestion
caused by controlled vehicle fleets. Second, without loss of
generality, we assume that the arrival process of passengers
for each origin-destination pair is a time-dependent Poisson
process. We further assume that such a process is independent
of the arrival processes of other origin-destination pairs and
the coordination of vehicles. These assumptions are commonly
used to model transportation requests [29].
Mesoscopic simulator. The mesoscopic model offers a hybrid
approach to traffic simulation that merges the intricate vehicle-
level behaviors from microscopic models with the aggregated
traffic flow characteristics of macroscopic models. Micro-
scopic models commonly leverage a car-following approach,
such as the Krauss model [30], providing a granular represen-
tation of traffic dynamics at the single vehicle level. Such de-
tailed simulations, however, require substantial computational
resources. Notably, when simulating a scenario for an AMoD
operator, the required level of accuracy is typically lower,
and one can model car-following behaviors at a coarser level,
reducing the computational burden. To this end, mesoscopic
models employ queuing theory to spatially aggregate the car
flow description [18]. Each link of a network is represented
as a sequence of queues, in which each car entering the queue
has to wait at least the free-flow travel time before leaving it,

Fig. 4. Aggregated view of the Luxembourg city network.

calculated as follows:

tνtr = Li/vimax, (6)

where Li represents the length of the i-th queue, and vimax

denotes its free-flow speed. In case of a congested queue, the
waiting time depends on the number of vehicles in the queue.
This can be defined to link the exit time of vehicle ν with the
exit time of the preceding vehicle ν − 1 as follows:

tνexit ≥ tν−1
exit + τ is, (7)

where the time headway associated with the i-th queue, τ is,
depends on the congestion level of the queue. To differen-
tiate between free-flow and congested queues, a congestion
parameter ni

jam must be defined. This parameter allows for
the determination of four distinct values for the time headway,
based on the congestion state of both the current queue and
the subsequent queue, as follows:

τ is =


τff if ni < ni

jam and ni+1 < ni+1
jam

τfj if ni < ni
jam and ni+1 ≥ ni+1

jam

τjf if ni ≥ ni
jam and ni+1 < ni+1

jam

f(ni+1, τjj) if ni ≥ ni
jam and ni+1 ≥ ni+1

jam ,

(8)

where ni is the number of vehicles in the i-th queue. The
high-fidelity scenario described in Section III-D is based on
a mesoscopic model of the city of Luxembourg. Detailed
information on the calibration of this traffic scenario can
be found in [31, 32]. In this scenario, the AMoD operator
is modeled as a robo-taxi fleet that must serve travel de-
mand. Additionally, exogenous traffic and road infrastructure
elements such as stop signs, lanes, and traffic lights—are
also considered. Such factors directly influence the network’s
congestion levels and, consequently, the travel time, resulting
in a more realistic depiction of traffic flow behavior when
compared to macroscopic models. The original network has
been aggregated into 8 different regions, as shown in Figure
4. The desired vehicle distribution will then be determined for
these 8 aggregated regions. Additionally, each passenger can
request a ride only between the centers of these regions. The
same assumption applies when the vehicles are rebalanced.



TABLE IV
SYSTEM PERFORMANCE ON NEW YORK 8× 8 NETWORK

Reward Served Rebalancing
(%Dev. MPC-standard) Demand Cost ($)

ED 41,930 (-24.4%) 13,028 11,023
RL-0Shot 46,516 (-15.1%) 13,974 10,083
RL 47,843 (-12.6%) 14,165 12,165
MPC-oracle 54,737 (0%) 16,275 10,389

B. Model implementation
In what follows, we provide additional details for the

implemented baselines and models:
Domain-driven heuristics. Within this class of methods, we
measure the performance of heuristics generally accepted as
reasonable baselines.

1) Equally-balanced System: at each decision step, we take
rebalancing actions so to recover an equal distribution
of idle vehicles across all areas in the transportation
network. Concretely, the heuristic achieves this by solv-
ing the minimum rebalancing cost problem with a fixed
desired number of idle vehicles among all stations, i.e.,
given M available vehicles at time t, m̂t+1 = { M

|N |}i∈N .
2) Plus-1: at each decision step, we recover the number

of vehicles available in the region proceeding with the
demand-matching process. For every vehicle that departs
a region to fulfill a passenger trip, another vehicle is
rebalanced back to that same region. This method has
been presented in [33].

Optimization-based methods. Within this class of methods,
we measure the performance of methods relying on the solu-
tion of large-scale network flow problems.

3) MPC-Oracle: we directly optimize the passenger flow
and rebalancing flow using a standard formulation of
MPC [34] that assumes perfect foresight information of
future user requests and network conditions (e.g., travel
times, prices, etc.). Therefore, this approach serves as
an oracle that provides a performance upper bound for
any coordination algorithm.

4) MPC-Forecast: we relax the assumption of perfect fore-
sight information in MPC-Oracle, substituting with a
noisy and unbiased estimate of demand. This estimate
takes the form of the rate of the underlying time-
dependent Poisson process describing passenger arrival
in the system. This approach is a realistic control-based
benchmark in the context of unknown system dynamics
but also exhibits poor scalability like MPC-Oracle.

C. Additional results
Service Area Expansion. To further study how well the
RL-based policy can generalize to conditions unseen during
training, we now consider the case of a hypothetical service
area expansion. We define the task as follows: given 64 stations
in the New York scenario (organized as a 8× 8 grid over the
city’s geography), we first learn a rebalancing policy in the
inner 4 × 4 region, which we then use, without any fine-
tuning, on the full 8 × 8 grid. Despite the 300% increase
in service area, results in Table IV show that RL-0Shot is
only 2.5% less profitable and satisfies 1.3% fewer customers

TABLE V
SYSTEM PERFORMANCE ON THE IRREGULAR 16-DIMENSIONAL

TOPOLOGY (NEW YORK)

Reward Served Rebalancing
(%Dev. MPC-oracle) Demand Cost ($)

ED 7,900 (-27.9%) 2,431 3,451
RL 9,981 (-8.9%) 2,531 1,371
MPC-oracle 10,955 (0%) 2,527 382

Fig. 5. Left: System performance (Percentage Deviation from MPC-oracle)
for agents trained either on a single granularity (4×4) or across granularities
(4× 4 - 10× 10), Right: Comparison of computation times between RL and
MPC-oracle.

when compared to its fully-retrained counterpart (RL), thus
exhibiting an interesting degree of portability to scenarios
unseen during training. From a practical perspective, it is
important to underline how this experimental setting might
represent a set of common real-world scenarios, such as: (i)
a service provider interested in expanding its service area
without having to re-train a control policy from scratch, and
(ii) when faced with extremely large urban networks, a service
provider might consider training a policy on specific sub-
graphs of the network, and later being able to deploy the
learned policy on the entire system.
Irregular Geographies.

We now investigate how well the pre-trained RL can be
applied to arbitrary, non-grid-like transportation networks.
Specifically, we select 16 stations defining a disjoint service
area, thus not representable as a contiguous grid over the
city’s geography. Results in Table V show that the proposed
approach achieves almost 40% reduction in rebalancing cost
together with a 26% increase in profit compared to an equally
distributed policy, thus exhibiting natural adaptation capabili-
ties to irregular geographies.

Most importantly, the permutation of areas and their disjoint
positioning, would make non-GNN-based architectures ill-
defined for the task. On the other hand, by explicitly repre-
senting stations as relational entities in a graph, graph neural
networks enable reinforcement learning agents to recover
extremely flexible behavior policies when dealing with diverse
and irregular urban topologies.
Network Granularity.

From a service provider perspective, given a spatial seg-
mentation of the service area, a critical decision is the one
characterizing the spatial area associated with each node, or
granularity, of each rebalancing area. To assess how well RL is
able to generalize across different service granularities we also
study adaptation to finer spatial segmentations. Specifically, we



define the task as follows: given arbitrary granularities ranging
from 4× 4 to 20× 20 grids (with 2× 2 increments), we are
interested in evaluating the portability of RL when trained on
coarse granularities and later applied, without any fine-tuning,
to finer spatial scales. Results in Fig. 5 (left) show transfer
performance for RL under two different training strategies. The
first pre-trains a rebalancing policy solely on a 4×4 grid, while
the second exposes the agent to a diversity of granularities also
at training time by considering grids up until 10×10. The re-
sults show that training across granularities strongly increases
the generalization capabilities of RL, leading to rebalancing
policies effective also under extreme granularity variations.
Crucially, we believe these results show clear evidence that
it is possible to explicitly consider transfer and generalization
in the design of the networks and training pipelines, and we
believe this is an interesting and fruitful direction for future
work.


	Introduction
	Methodology
	Results
	Performance properties and baseline comparisons
	Generalizability to new environments
	Computational analysis
	Higher fidelity for policy evaluations via micro-simulations

	Outlook
	Appendix A: Methodology
	Reinforcement Learning Details
	Neural Network Architecture

	Appendix B: Discussion and Algorithmic Components
	Computational efficiency
	Goal-reaching constraint as value function

	Appendix C: Additional Experimental Details
	Environment details
	Model implementation
	Additional results


