
Task-Driven Co-Design for Resource-Efficient
Autonomous Vehicles: Integrating Perception and

Motion Planning
Dejan Milojevic∗†, Gioele Zardini‡§, Miriam Elser†, Andrea Censi∗ and Emilio Frazzoli∗

∗Institute for Dynamic Systems and Control, ETH Zürich, Zürich, Switzerland, {dejanmi, acensi, efrazzoli}@ethz.ch
†Chemical Energy Carriers and Vehicle Systems Laboratory, Empa, Dübendorf, Switzerland, miriam.elser@empa.ch

‡Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
§Laboratory for Information and Decision Systems, MIT, Cambridge, MA, USA, gzardini@mit.edu

Abstract—This paper examines the integration challenges and
strategies for designing Autonomous Vehicles (AVs), with a partic-
ular focus on the task-driven, optimal selection of hardware and
software to achieve a balance between safety, efficiency, and the
minimal usage of resources, including costs, power consumption,
computational requirements, and weight. We emphasize the inter-
play between perception and motion planning in decision-making
by introducing the concept of occupancy queries to quantify the
perception requirements for sampling-based motion planners.
We propose an approach for efficient sensor and algorithm
selection and placement, leveraging the perception requirements
and the False Negative Rate (FNR) and False Positive Rate (FPR)
to evaluate sensor and algorithm performance under various
factors such as geometric relationships, object properties, sensor
resolution, and environmental conditions. This forms the basis for
a co-design optimization that includes the vehicle body, motion
planner, perception pipeline, and computing unit. A case study
on developing an AV for urban scenarios provides actionable
information for designers, and shows that complex tasks escalate
resource demands, with task performance affecting choices of the
autonomy stack.

I. INTRODUCTION

The advancement of AVs has enabled the commercial de-
ployments of driverless mobility services in numerous urban
areas worldwide. Nonetheless, realizing the full potential of
AVs requires safe and efficient operation, which depends on
effective design. Recent developments in Autonomous Driving
(AD) have made various hardware and software components
readily available. Thus, the challenge in developing AVs in-
volves selecting the right combination of these interdependent
components. The final design must ensure safety and effi-
cient task performance while minimizing resources required
for design and operation, such as cost, power consumption,
computation, and weight.

In terms of perception, this includes selecting and placing
sensors and choosing algorithms to process the sensor data.
Hardware and software selections are not only interdependent
but also influence other system components such as com-
puting units, actuators, and decision-making. For instance, a
controller relies on references from a motion planner, which
are based on state estimates from an estimator, which, in
turn, depends on sensor data and power supply. Furthermore,
integrating perception software, such as object detection algo-
rithms, brings uncertainties in algorithm outputs that must be
accounted for in the design process.

To address these complex issues, a comprehensive frame-
work that employs abstract reasoning across various areas and

Fig. 1. Graphical illustration of the informal problem definition for designing
an AV for urban driving tasks, based on a catalog of hardware and software
components with an emphasis on minimizing resources.

balances functional requirements with resource constraints and
trade-offs is essential. This paper outlines our methodology
in [40] for addressing the complex task of AV co-design by
tackling such challenges.

Informal Problem Definition: The problem involves
defining catalogs that contain both hardware and software
components essential for the design of AVs. These include
vehicle bodies (i.e., vehicle chassis, shape and actuators),
sensor mounting configurations, perception pipelines (i.e., sen-
sors and perception algorithms), decision-making algorithms,
and computing units. Each component is associated with spe-
cific resources, including monetary cost (e.g., sensor prices),
power consumption (e.g., energy requirements of computers),
computational resources (e.g., flops required by perception
algorithms), and mass (e.g., weight of sensors). The challenge
is to co-design the AV with a particular task by selecting from
these components to minimize resource usage while ensuring
feasibility. A graphical illustration of the informal problem
definition is depicted in Fig. 1.

Assumptions: To address the AV co-design problem, we
establish the following assumptions. First, we assume that the
robot software architecture is factorized into perception, state
estimation, planning, and control. Second, we assume that
there is an occupancy query-based interface between estima-
tion and planning. Finally, we assume that object detections
of the perception layer are binary: objects are either detected
or not, based on the detection received from the perception
pipelines. Our methodology remains flexible to variations in
software architectures and motion planners, provided that the
information needed by the robot to complete the task can be
gathered, which must be provided by the perception pipeline.
While our focus here is primarily on object detection, the
approach could be extended to encompass other perception
tasks, such as localization.

Contribution: The contributions are generally applicable
to mobile robots including AVs and can be summarized as
follows. First, we explore the information requirements for
AVs with sampling-based motion planners via the concept of
occupancy queries. Second, we show how to formulate and
solve the sensor selection and placement problems for an AV,
via set cover problem by using the performance requirements
and perception performance benchmarks. Third, we develop
a co-design framework for an AVs leveraging a monotone
theory of co-design optimization, promoting the task as a
functionality, and minimizing resource consumption in terms
of monetary costs, power and computational needs, and mass.
Finally, we illustrate the above contributions through a suite
of case studies on AVs design.

Organization of the paper: Sec. II reviews the related
work, and contextualizes the efforts proposed in this paper.
Sec. III presents in depth our system models, including the
robotic platform, tasks, decision-making, perception perfor-
mance, and requirements. We then present the system co-
design optimization problem, and its solution in Sec. IV, and
showcase various case studies in Sec. V. Finally, we conclude
and provide an outlook for future research in Sec. VI.

II. RELATED WORK

The challenges of design automation for embodied in-
telligence, such as AVs, are highlighted in several stud-
ies [52, 69, 35, 42]. These challenges primarily revolve
around developing a framework that can accommodate the
complex nature of cyber-physical systems [52, 69], navigating
the heterogeneous design landscapes including hardware and
software [69], the difficulty of integrating diverse components
into robotic systems, and determining the specific information
needs for a robot to fulfill a given task [42]. In the following,
we review the literature in this field, mainly focusing on
sensor selection and its relevance to robotics, design space
exploration, comparative analysis of methods and trade-offs,
benchmarks, and co-design frameworks.

The challenge of selecting and positioning sensors within
a system is complex, and often lacks a closed-form solution.
Despite the various contributions in [28, 20, 25, 58, 12, 13,
19, 18], current literature does not fully address the integrated
selection and placement of sensor hardware in conjunction
with the choice of perception algorithms, especially for ob-
ject detection tasks, with a particular focus on contemporary
deep learning techniques. Furthermore, the critical exploration
of sensing requirements for bridging decision-making and

perception is underrepresented. The analyzed studies also
overlook the necessity for methodologies that unlock seamless
integration with other design considerations, such as computer
and actuator selection.

Design space exploration has gathered substantial interest
in robotics research, with significant contributions in studies
such as [24, 49, 68, 41] aiming to delineate the boundaries
of sensor and actuator requirements for effective robotic
planning. Comparative analyses of robotic components have
been advanced through the works of O’Kane, Lavalle, and
Censi [44, 34, 8], which explore methodologies for assessing
sensor performance and establishing criteria for comparisons.
Trade-off analysis in design choices is examined in contribu-
tions such as [31, 51, 50].

From the point of view of holistic co-design frameworks,
significant advancements have been made in robot design
methodologies encompassing both software and hardware
elements, facilitated by high-level behavioral specifications.
Mehta introduced an approach utilizing linear temporal logic
to transform high-level design specifications into tangible
selections of robot components from an extensive library [39].
Furthermore, [26] develops a heuristic algorithm specifically
targeted at the creation of robotic devices tailored to follow
predefined motion trajectories accurately. Similarly, [53] ex-
plores the optimization of robotic design by carefully selecting
actuation and sensing hardware to minimize design costs while
ensuring the robot’s ability to execute plans and accomplishing
tasks.

The methods previously discussed do not focus on fully
automating the design process for an entire robotic system
and They overlook several critical co-design challenges, as
identified in [63, 52, 69, 35, 42], such as a) formalizing
heterogeneous components across varying levels of abstrac-
tion, b) composition heterogeneous components to allow co-
design across the entire system, c) facilitating collaboration
among different systems as well as their domain experts, d)
ensuring computational tractability, which allows quantitative
design solutions, e) accommodating continuous systems that
evolve over time, and f) maintaining intellectual tractability
for simple usage and understanding. Our research is based on
the monotone theory of co-design [7, 9] and builds on our
series of previous works [40, 65, 66, 67], where we studied
the co-design of autonomy in the context of AVs and mobility.
In the current work, we advance our methodology by model-
ing each component separately and fostering compositional
interconnections, particularly between the perception and the
decision-making processes of a robot.

III. SYSTEM MODELING

A. Modeling the robotic platform
We consider a mobile robot R, defined by its physical

body B with configuration space Γ, and its software, the agent,
which we call A.

Agent: We assume that the agent A consists of a modular
software architecture, comprising perception, state estimation,
motion planning, and control [47]. In particular, the control
function is predicated on a reference trajectory formulated by
a motion planner, which itself is based on state estimates from
an estimator. The estimator’s accuracy relies on the sensor data
gathered and processed by the perception system. We want to
choose the planner and the perception system for the agent.

Body: The robot body B encompasses hardware com-
ponents, including its 3D shape and actuators. We define the
robot’s body as follows.

Definition 1 (Body). A robot body B is defined by a tuple

B := ⟨SH,Γ,U,dyn,HW⟩,
where SH ⊂ R3 represents the physical 3D shape of the robot,
Γ denotes the configuration space, U refers to the control
space, and the dynamics1 are expressed as ẋt := dyn(xt, ut),
with ut being the control input and xt the state at time t ∈
R≥0. The state x ∈ X , where the state space is defined
as X := Γ × H. All additional hardware components and
robot’s body appearance, such as actuators, batteries, color,
material, etc., are captured in the hardware tuple HW.

The function shR : POW(Γ) → POW(R2) converts a robot
configuration into its footprint.

The examination of the robot’s structural framework B
involves assessing its mounting positions mp (with mp ∈ MP
and MP ⊂ SH), as well as the selection of sensors. The sensor
hardware with the related perception algorithm is referred to as
a “perception pipeline” pp. In particular, our analysis focuses
on 3D object detection to demonstrate the perception pipeline’s
ability to detect objects in the environment. The collection of
all perception pipelines is denoted by PP. Furthermore, we
evaluate sensor mounting orientations mo ∈ MO, character-
ized by sensor yaw and pitch angles, such that MO ⊆ R2.
These aspects together form the specification of the robot’s
body.

Definition 2 (Robot). A robot R is a tuple consisting of an
agent A and body B: R := ⟨A,B⟩.
B. Modeling a task

We define the task as a set of scenario instances. In princi-
ple, however, a task could also be defined as a distribution of
scenarios, where a set of scenarios can be sampled.

Definition 3 (Task). A task T is a set of scenario instances.

A scenario instance

S = ⟨W, γstart,G, env, {Ci}i∈{1,...,M}⟩
represents a concrete realization of a scenario S (see Def. 16),
where the initial configuration γstart ∈ Γ, goal G ∈ R2, and
environment env ∈ E are drawn from their respective distribu-
tions given by the scenario. The operational environment env
encompasses various weather and light conditions. Moreover,
M number of object class instances Ci are drawn from the
corresponding Poisson distributions. An instance of a class Ci
is defined as a tuple Ci = ⟨Qi,Ui,dyni, appeari⟩, where a
particular appearance appeari is drawn from fAP.

Definition 4 (Object class). An object class C is a tuple

C := ⟨Q,U,dyn, fAP⟩,
where Q is the configuration space and U is the control space
for the class. The dynamics1 are defined by ẋt = dyn(xt, ut)
with ut ∈ U being the control input and xt ∈ X the state
at time t, where X := Q × H. The appearance of a class

1Without loss of generality, the dynamics can be stochastic.

is represented by a tuple comprising elements such as shape,
color, material, etc., denoted as appear. The set of all pos-
sible appearances is represented by AP, with the appearance
distribution of a class given by AP ∼ fAP(appear).

The function shi : POW(Qi) → POW(R2) maps a class
configuration into the footprint projecting the 3D shape of the
class’s appearance onto the ground plane.

Prior: Moreover, for each object class in each scenario
we have given the prior knowledge P (see Def. 15), which
represents the class configurations, such that P ⊆ π3(C) = Q
for a particular class. This prior knowledge essentially outlines
the allowed configurations for objects of the specific class in
a scenario.

C. Modeling an agent

Motion planning algorithms typically need a notion of
the obstacle free configuration space to compute a reference
trajectory. Combinatorial motion planning [33, 47, 10, 56, 2]
and optimization-based motion planning [47, 11, 22, 21, 30,
48, 62, 36] depend on mathematical models for the free
configuration space, represented through geometric shapes or
optimization constraints. The task of pinpointing the critical
information necessary for calculating a reference trajectory
is notably challenging in these frameworks, mainly because
they require knowledge of the entire state space including all
obstacles. In contrast, sampling-based planners [33, 47, 11]
offer a different strategy, sidestepping the need for precise
internal representations of obstacles. Such planners generate a
state hypothesis by posing a series of questions, such as “Will
there be a collision if I occupy a certain configuration at a
certain time?”. These questions are referred to as occupancy
queries or just queries and are represented as elements of the
configuration space Γ at a certain time t with a certain envi-
ronment env. Sampling-based planners thus enable a reverse
flow of information within the outlined agent architecture,
indicating a progression of data from the motion planning
phase back to the perception system. For the sake of simplicity,
the term agent throughout the remainder of this paper denotes
a sampling-based motion planner.

Definition 5 (Query). A query is defined as ψ ∈ Ψ, where Ψ
is the product space of the configuration space Γ, the time
in R+ and the environment in E: Ψ := Γ × R+ × E.

Different motion planners produce different distributions
of queries. Planners such as RRT*, as visualize in Fig. 2a,
converge to an optimal solution. However, during the search
for the optimal solution, random configurations are sampled,
leading to more information requirements for the sensors.
Lattice planners, as visualized in Fig. 2b, on the other hand,
are not optimal, but by simply discretizing the search space
with motion primitives, less information is required from the
sensors compared to RRT*.

Given an agent A and a task T , the goal is to obtain a
set of configurations which are generated by the agent’s state
inference process, motivated by the concept of deterministic
sampling-based motion planning in [29].

Definition 6 (Task Queries). Given a task T , the task queries
generated by an agent A are the union over all queries of all

(a) Example of an RRT* planner. (b) Example of a lattice planner.

Fig. 2. An illustration of an AV navigating towards the yellow target area. The
figure showcases two motion planners: an RRT*-based planner and a lattice
planner. The red lines represent the tree of paths generated by each planner,
while the green line indicates the solution path identified by the planner.

the scenario instances in the task:
tq : POW(T)× A→ POW(Ψ),

⟨T ,A⟩ 7→
⋃
S∈T

plan(A, S),

such that tq(A, T) ⊆ Ψ. The function plan maps an agent A
and a scenario instance S to a set of queries: plan : A×T→
POW(Ψ).

D. Modeling perception performance and requirements
The next step is to evaluate the capabilities of a perception

pipeline, including sensor hardware and perception software,
to measure and provide the information needed by an agent.
The perception pipeline detection capabilities are denoted as
perception performance and are represented in terms of FPR
and FNR for a certain object class instance Ci with a certain
class configuration in Qi and appearance appeari. For each
perception pipeline ppj and each object class instance Ci, the
FNR and FPR functions are defined as:

fnr : Qi ×APi × PP× E→ POW(I),

⟨qi, appeari,ppj , env⟩ 7→ [a, b].

fpr : Qi ×APi × PP× E→ POW(I),

⟨qi, appeari,ppj , env⟩ 7→ [a, b].

The set I is the set of all intervals: [a, b] ⊆ R : 0 ≤ a ≤ b ≤ 1.
The obtained interval [a, b] represents the confidence interval
with a lower bound a and upper bound b of the perception
pipeline’s FNR and FPR. During our selection process, we
use the upper bound to conduct a worst-case analysis. With
the variables appear, pp and env we summarize other relevant
parameters for representing the FNR and FPR as for instance
the object size, object color, sensor resolution or weather
condition. The implementation of the FNR and FPR is not
the focus of this work. An illustration of the perception
performance is shown in Fig. 3.

Task queries constitute a subset of the robot’s configuration
space. On the other hand, perception performance relies on
the configuration of object classes. In order to establish an
interface between task queries and perception performance,
the former are converted into class configurations which
need to be detected by the perception pipelines. Such class
configurations are referred to as perception requirements.

The transition from queries to class configuration involves
determining which class configurations may collide with the
robot at a specific query. At a more abstract level, the objective
is to identify all class configurations for which the perception

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30
40

50

0.2

0.4

0.6

0.8

up
pe

r(
fn

r)

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30
40

50

0.2

0.4

0.6

0.8

up
pe

r(
fp

r)

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30
40

50

0.2

0.4

0.6

0.8

up
pe

r(
fn

r)

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30
40

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

up
pe

r(
fp

r)

Fig. 3. Comparison of the perception performance of two pipelines: Velodyne
HDL32E lidar with PointPillars detection model (top plots) [32] and Basler
acA1600-60gc camera with FCOS3D detection model (bottom plots) [61].
Left plots show FNRs and right plots FPRs, highlighting the upper bounds
of confidence intervals against radial distance r and relative orientation θ
between sensor and object class in polar coordinates. Data is from the
nuScenes dataset [4], using models from the MMDetection3D [14] library.

pipelines must indicate a collision, when posed with the query.
It is important to emphasize that we are looking at agents
which can ask for some occupancy queries ψ = ⟨γ, t, env⟩ in
the future. It is not just a simple matter of checking which
class configurations could collide with the robot at a certain
configuration γ. All class configurations at time 0 that would
lead to a collision at time t are needed, given the dynamics
of the classes and the class prior Pi provided by the scenario.
Therefore, the objective is to derive the set of configurations
for all classes within the scenario at time 0, where there exist
control inputs that could lead the class to a collision with the
robot with configuration γ at time t. Such class configurations
are obtained by sampling the dynamics and going backwards
in time. In essence, all configurations generated through the
sampling are the ones that the perception layer needs to detect.
An illustration of this process from queries to perception
requirements is shown in Fig. 4.

The following definitions are used to define the perception
requirements of a certain task for a given agent.

Definition 7 (Collision). Collision is a mapping that generates
all possible class configurations in Qi that are in collision with
the robot at a certain configuration γ using their footprints
shR(γ) and shi(qi).

collision: Γ × C → POW(Q),
⟨γ, Ci⟩ 7→ Θi,

where C is the set of all class instances and Θi ⊆ Qi ⊆ Q.

Definition 8 (Class Trajectory). A class trajectory is defined
as q̄i ∈ Q̄i, where Q̄i is the product space of the class con-
figuration space Qi and its power set. Thereby, q̄i = ⟨qi,Θi⟩,
where qi is the start configuration of the trajectory such that
qi ∈ Θi, where Θi contains all the configurations of the
trajectory: Q̄i := Qi × POW(Qi).

Fig. 4. This figure shows class configurations at time 0 leading to potential
collisions with a robot at a specific query ψ = ⟨γ, t, env⟩. The robot is
depicted as a small red AV on the left and the robot’s future configuration γ
from the query is the transparent AV in the intersection’s center. Surrounding
cars represent classes with trajectories that lead to a collision with the AV at
time t with configuration γ. Green lines show feasible trajectories based on
prior knowledge, and a red line shows an infeasible trajectory that violates
the prior. The perception requirements in this example are the depicted car
configurations with green trajectories.

Definition 9 (Perceptual Collision Prediction). For each query
ψ = ⟨γ, τ, env⟩ of an agent A, there exist class trajectories
in Q̄i that are the preimage of the class dynamics dyni.
These trajectories lead to one of the class configurations in
collision(γ, Ci) ⊆ Qi while starting at time −τ . This mapping
is termed perceptual collision prediction

pcp: POW(Ψ)× C → POW(Q̄),
⟨Ψ0, Ci⟩ 7→ Θ̄i,

where Ψ0 ⊆ Ψ and Θ̄i ⊆ Q̄i ⊆ Q̄.

Definition 10 (Prior check). The prior check is a map that
takes all start configurations qi of trajectories ⟨qi,Θi⟩ ∈ Q̄i,
which class configurations Θi are a subset of the prior Pi.

priorcheck: POW(Q̄i)× POW(Qi)→ POW(Qi),

⟨Θ̄i,Pi⟩ 7→ Θi,

where Θ̄i ⊆ Q̄i and Θi ⊆ Qi.

Definition 11 (Task Perception Requirements). The perception
requirements for an agent A undertaking a task T are defined
as the mapping from task queries tq(A, T) to all possible
subsets of class configurations for each environment env
within the task. This mapping is established by mapping
the queries into class trajectories with perceptual collision
prediction pcp and filtering the feasible start configurations
from the trajectories with priorcheck:

PR: A× POW(T)→
∏

env∈E

∏
k∈{1,...Kclass}

POW(Qk),

where Kclass is the number of unique object class instances in
the task and E is the set of all environments in the task.

For a given object class instance Ci and environment env
within task perception requirement PR(A, T), we express this
as PR(A, T , Ci, env), such that PR(A, T , Ci, env) ⊆ Qi.

IV. SOLVING THE ROBOT CO-DESIGN PROBLEM

In this chapter, we establish an optimization framework for
determining the optimal robot design tailored to a specific
task, leveraging a monotone theory of co-design [6, 9]. The
primary objective is the minimization of resource consump-
tion, which includes power consumption, robot body mass,
cost and computing resources. Appendix B introduces the
basic principles of co-design. The fundamental unit of the co-
design theory is the concept of a Monotone Design Problem
with Implementation (MDPI), as detailed in Def. 17. This
entity essentially translates implementations (design choices)
into specific functionalities and resources, which are repre-
sented as Partially Ordered Sets (posets). We will provide a
brief introduction to all the MDPIs of our robot co-design
problem, which is diagrammatically represented in Fig. 9.
The MDPIs are represented as blocks with green wires on
the left for functionalities and dashed red ones on the right
for resources. More details about the different MDPIs are
provided in Appendices C and D. In Sects. IV-A and IV-B
we address task-oriented co-design of a complete mobile
robot. Sec. IV-B addresses the sensor selection and placement
problem, which forms the core of the entire optimization, using
the formulations introduced in Sec. III.

A. Modeling from task to perception requirements

First, the Planner MDPI represents the choice of motion
planner for the robot. It provides a set of scenario instances
representing the task T as a functionality and the average
speed in km/h the planner navigates the AV across all sce-
nario instances, indicating the task performance. The Planner
MDPI requires occupancy queries Ψ, compute and the robot’s
dynamics resources. The more scenario instances are required,
the more queries are needed by the planner. The compute
resource encompasses computational capabilities, including
CPU and GPU performance, quantified by operations per
second and available memory. An increase in collision checks
for occupancy queries leads to a higher demand for compute
resources. Robot’s dynamics are characterized by parameters
such as minimum turning radius, maximum acceleration, and
maximum deceleration.

The Perceptual Collision Prediction MDPI describes the
pcp function to determine all potential feasible class trajec-
tories Q̄ that could result in collisions with the robot at the
occupancy queries from the planner. This guides the perception
system to focus on critical areas based on the occupancy
queries and the class dynamics. Consequently, the occupancy
queries Ψ, class dynamics and class footprintop serve as
functionalities of this MDPI. The class dynamics, including
minimum turning radius, maximum acceleration, and deceler-
ation, are specified similarly to the robot’s dynamics.

The Prior Check MDPI describes the priorcheck function
as outlined in Def. 10. The function priorcheck takes all
start configurations from the class trajectories, which trajectory
configurations are all in the prior P of the class. Thus, the
functionalities are the class configurations prior, where classes
can be in the scenario instance, and the class trajectories
Q̄ generated by pcp. The resources are the final perception
requirements PR.

The Robot body MDPI encompasses the characteristics
of the robot body B, such as the robot’s dynamics, sensor

mounting configurations, the robot’s footprint, the maximum
payload mass capacity, the auxilary power capability, and
driving range. Requirements for this MDPI include the robot’s
shape SH in R3, associated with fixed costs in CHF and
operational costs in CHF/m. The Computing MDPI imple-
ments the computing units necessary for the robot’s software
operations, including both motion planning and perception. It
provides computational capabilities as a functionality in terms
of CPU and GPU performance, measured in memory capacity
and operations per second. These computational capabilities
are encapsulated as compute. The provision of compute is
directly linked to associated cost in CHF, mass in kg and power
consumption in W.

B. Sensor selection and placement problem

This section introduces a methodology to obtain the rela-
tionship between perception pipelines and perception require-
ments for a particular task, while accounting for resource
consumption. Employing a worst-case approach, this study
assumes the absence of filters that account for historical
detection data. This premise necessitates that for a perception
pipeline to accurately respond to occupancy queries, its FNR
and FPR must not exceed a predefined threshold ϵ. Accord-
ingly, this assumption ensures that the identification of class
configurations from perception requirements is not influenced
by temporal factors. Thus, all class configurations for which
the upper bound from the fnr and fpr functions is dominated
by the threshold ϵ are considered covered or detectable by the
perception pipeline ppj :

{qi ∈ Qi :up(fnr(qi, appeari,ppj , env)) ≤ ϵ
∧ up(fpr(qi, appeari,ppj , env)) ≤ ϵ},

where up takes the upper bound of an interval. This set
of class configurations which can be seen by a perception
pipeline depend on the mounting configuration on the robot
body as well as the robot body shape itself. The reason is that
different mounting configurations will have different relative
class configurations to the perception pipeline. Moreover,
depending on the mounting configuration on the robot, the
shape of the robot could block the sensor Field of View (FoV).

We call a perception pipeline with a mounting position on
a robot body and some yaw and pitch mounting orientation as
mounted perception pipeline.

Definition 12 (Mounted Perception Pipeline). Given a per-
ception pipeline pp, a robot body B, a mounting position of
a sensor mp on the body, and the yaw and pitch angle of
the sensor mounted on the robot mo, a mounted perception
pipeline is a tuple containing the perception pipeline, the robot
body, the mounting position and the mounting orientation:
mpp = ⟨pp,B,mp,mo⟩.

The following map is defined, which yields all the class
configurations visible to a mounted perception pipeline, con-
sidering a specified threshold.

Definition 13 (Mounted Perception Pipeline Class Coverage).
Consider a mounted perception pipeline mpp characterized
by its perception performance fnr and fpr, a target class
instance C, an environment env and a threshold ϵ. The set
of class configuration which can be detected by the mounted

perception pipeline are defined as

mppcc: C ×MPP× E× R[0,1] → POW(Q),
⟨Ci,mppj , env, ϵ⟩ 7→ Θi,

where MPP is the set of all mounted perception pipelines and
Θi is a subset of the class configuration set Qi.

Collections of mounted perception pipelines class coverage
for some given Kclass object class instances, Menv environments
and Lmpp mounted perception pipelines are given as

MPPC =

Kclass⋃
k=1

Lmpp⋃
l=1

Menv⋃
m=1

mppcc(Ck,mppl, envm, ϵ).

Definition 14 (Sensor selection and placement problem).
Consider a task T , an agent A, a body B with mounting
positions MP, perception pipelines PP, mounting orientations
MO and a detection threshold ϵ. The task involves Kclass
unique number of object class instances and Menv number
of environments. From the body, perception pipelines and
mounting orientation, Lmpp number of mounted perception
pipelines mpp can be generated. This leads to the task
perception requirement PR(A, T) and a set MPPC of col-
lections of mounted perception pipelines class coverage with
mppcc(Ck,mppl, envm, ϵ) ⊆ Qk, and W cost functions
cw : mppl → R>0. The problem is to identify MPP ⊆
{mppi}i∈{1,...,Lmpp} with the minimum total cost over all
cost functions. The subset MPP must cover each element in
PR(A, T) with a matching mppcc(Ck,mpp, envm, ϵ), spe-
cific to the same Ck and envm within PR(A, T , Ck, envm) ⊆
Qk. Furthermore, each mpp ∈ MPP must occupy a unique
mounting position mp. The problem is outlined in Eq. (1),
employing a binary vector x composed of elements xi ∈
{0, 1}, each denoting a decision variable. Here, xi = 1
signifies the selection of the mounted perception pipeline
mppi. An indicator function emp is introduced to map a class
configuration set to an empty set whenever the associated
binary variable xi = 0: Matrix F indicates which mounted
perception pipelines share the same mounting positions. In a
given row of F , all entries set to 1 signify mounted perception
pipelines with identical mounting positions.

min

Lmpp∑
i=1

W∑
j=1

wjcj(mppi) · xi

s.t. PR(A, T , Ck, envm) ⊆
Lmpp⋃
l=1

emp(mppcc(Ck,mppl, envm, ϵ), xl)

∀k ∈ {1, . . . ,Kclass},m ∈ {1, . . . ,Menv},
F · x ≤ [1 . . . 1]

T
,

xi ≤ 1 ∀i ∈ {1, . . . ,Lmpp},
xi ∈ N0 ∀i ∈ {1, . . . ,Lmpp},
W∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,W.

(1)

The union of all class configurations detectable by the
selected mounted perception pipelines, represented as MPP,

across all classes and environmental conditions is denoted as
perception coverage:

PR(A, T) ⊆
Kclass⋃
k=1

⋃
mpp∈MPP

Menv⋃
m=1

mppcc(Ck,mpp, envm, ϵ).

The nature of Def. 14 closely resembles the weighted set
cover problem [59], since it also tries to cover a given set by a
collection of subsets while minimizing a cost function. In Ap-
pendix E we show how to formulate Def. 14 as a weighted set
cover problem and solve it using Integer Linear Programming
(ILP). An overview of the whole sensor selection and place-
ment process is shown in Fig. 19. Finally, we can formulate
the Sensor Selection and Placement MDPI. It implements
the sensor selection and placement problem from Def. 14 and
it is the composition of the following MDPIs. The Coverage
MDPI focuses on meeting the robot’s perception requirements
as a functionality by ensuring sufficient perception coverage
as a resource, which includes the ability to detect necessary
class configurations to accomplish the task. An increase in
perception requirements directly necessitates an enhancement
in perception coverage.

The Mounted Perception Pipelines MDPI implements the
selection and positioning of perception pipelines on the robot
to cover all perception requirements, thus ensuring perception
coverage, considering all class appearances appear within the
task, and accommodating the robot’s shape SH. This MDPI
requires a set of mounting configurations in SE(3), a set of
perception performance quantified by the upper limits of fnr
and fpr functions, and the robot’s footprint shR.

The Perception Pipelines MDPI outlines the implemen-
tation of available perception pipelines, encompassing both
sensors and perception algorithms. It delivers perception per-
formance as its functionality, demanding cost in CHF, mass
in kg, power in W, and compute as resources. The monotonic
relationship indicates that enhancing perception performance,
aiming for lower FNR and FPR, requires the employment
of pricier, high-resolution sensors which generally consume
more power and are heavier. Alternatively, it might involve
leveraging more complex perception algorithms that demand
substantial computational power.

V. DESIGN OF EXPERIMENTS AND RESULTS

A. Design of experiments
The components available for design are reported in Tab. II

in Appendix F. The urban driving task contains 205 driv-
ing scenarios from the CommonRoad library [37], featuring
five different vehicle classes. The objective, G, is for the
autonomous vehicle to reach a designated area. We analyze
scenarios with two nominal speeds: 30 km/h and 50 km/h. We
ran experiments with fewer scenarios to examine how task
complexity affects the AV design. Additionally, the experi-
ments varied the task prior assuming no cars can approach
the AV from left/rear.

B. Results
We solve the presented co-design problem by fixing selected

scenarios, and showing the corresponding Pareto fronts of
minimal resources, as illustrated in Fig. 5. The figure shows
that more resources are required for more complex tasks. Each

task’s complexity is represented by the number of scenarios,
with simpler tasks as subsets of more complex ones. The upper
figure compares price (CHF) on the x-axis against mass (kg)
on the y-axis. Red dots indicate optimal solutions within each
task, with the surrounding red area highlighting the feasible
resource range (i.e., the upper sets of resources). Annotations
with capital letters point to the implementations, detailed in
the lower sub-figures. We show the top view of the selected
vehicle, with cameras marked with dots and lidars with squares
to illustrate their mounting positions. Camera orientations are
further highlighted by small triangles indicating the initial FoV
and yaw direction, providing an indication of their potential
coverage area. Each perception pipeline is color-coded. In
addition, the graphics show the selected motion planner and
computing unit.

40000 60000 80000 100000 120000
Price (CHF)

0.5

1.0

1.5

2.0

2.5

3.0

M
as

s
(K

g)

B

A

|T |= 9
|T |= 25
|T |= 90
|T |= 205

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Mass: 1.7 Kg
Cost: 109404.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: OS264, Algorithm: pointpillars

A

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Mass: 0.91 Kg
Cost: 55774.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d

B

Fig. 5. Pareto front of price and mass across tasks, where tasks with more
scenarios demand more resources and encompass those with fewer scenarios.
Implementations for points A and B are visualized vertically. A and B indicate
the lowest mass for the most and least complex tasks, respectively.

The impact of more resource requirements for the AV design
by increasing the nominal speed from 30 km/h to 50 km/h
within identical task scenarios is visualized in Fig. 6, where
we show the Pareto fronts for price (CHF) against computation
(Gflops) as well as the corresponding implementations for the
different resources.

Fig. 7 demonstrates how restricting car configurations prior
within identical task scenarios leads to lower resource require-
ments, where the Pareto fronts for price (CHF) against power
consumption (W), along with implementations are illustrated.

For the aforementioned solutions for various tasks, we
queried for the least resources by setting the average speed
functionality requirement to just above zero. Thereby, the
RRT* motion planner was consistently not selected. Con-
versely, when examining tasks by requiring higher average
speeds (e.g., 24 km/h), as illustrated in Fig. 8 for computation
impacts, it becomes evident that the resource demands increase

40000 60000 80000 100000 120000
Price (CHF)

0

200

400

600

800

1000

C
om

pu
ta

tio
n

(G
FL

O
PS

)

A

30.0 km/h
50.0 km/h

Planner: Astar
Computer: nvidiaJetsonOrinNano
Computation: 126.9 GFLOPS
Cost: 54725.0 CHF

Sensor: OS264, Algorithm: pointpillars
Sensor: OS2128, Algorithm: pointpillars

A

Fig. 6. Pareto front of price and computation across task velocities,
where higher velocities for the same set of scenarios require more resources.
Implementations for marked point A are visualized vertically. A indicate
lowest computation for 50 km/h and 30 kmh.

40000 60000 80000 100000 120000
Price (CHF)

30

40

50

60

70

80

90

100

Po
w

er
(W

)

BA

Restricted prior
Full prior

Planner: RRT
Computer: nvidiaJetsonOrinNano
Power: 40.1 W
Cost: 65355.0 CHF

Sensor: alphaprime, Algorithm: pointpillars
Sensor: Ace13gmfl12, Algorithm: fcos3d

A

Planner: Astar
Computer: nvidiaJetsonOrinNano
Power: 39.0 W
Cost: 100325.0 CHF

Sensor: hdl32, Algorithm: pointpillars

B

Fig. 7. Pareto front of price and power usage across priors, where priors
with more class configurations require more resources. Implementations for
points A and B are visualized vertically. A and B indicate the lowest power
usage for the least and most restricted prior, respectively.

for higher average speeds, such as 24 km/h (with nominal
speed of 30 km/h). In every solution where minimal power,
mass, computation, and cost were evaluated, the RRT* planner,
coupled with the sedan vehicle, emerged as the selected
choice. This pattern underscores the RRT* planner’s superior
efficiency within this case study, further highlighted by the
sedan vehicle’s highest acceleration capabilities and highest
price.

40000 60000 80000 100000 120000 140000
Price (CHF)

0

250

500

750

1000

1250

1500

1750

2000

C
om

pu
ta

tio
n

(G
FL

O
PS

)

B

A

minimum speed
14.0 km/h
24.0 km/h

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Computation: 1746.9 GFLOPS
Cost: 105734.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRTstar
Computer: nvidiaJetsonOrinNano
Computation: 136.8 GFLOPS
Cost: 121725.0 CHF

Sensor: OS264, Algorithm: pointpillars
Sensor: OS2128, Algorithm: pointpillars

B

Fig. 8. Pareto front of price and computation across different average speeds,
where planners providing higher average speed across all scenarios (30 km/h
nominal speed) demand more resources. Implementations for points A and
B are visualized vertically. A and B indicate the lowest price and lowest
computation for the highest average speed, respectively.

VI. CONCLUSION

This paper introduced a framework for designing mobile
robots tailored to specific tasks by selecting hardware and
software components. The choice comprises various elements
including robot bodies, sensors, perception algorithms, sensor
mounting configurations, motion planning algorithms, and
computing units. We delved into the decision-making aspect of
mobile robots by exploring what information a motion planner
requires from the perception system. We introduced occupancy
queries for sampling-based motion planners, allowing one to
identify the necessary perception requirements based on prior
knowledge of object classes, their dynamics, and shapes within
the environment. With the obtained perception requirements
and the perception performance of a sensor combined with a
detection algorithm, abstracted into FNRs and FPRs metrics,
we formulated the sensor selection and placement problem
and solved it as a weighted set cover problem using an ILP
approximation. Our case study on designing an AV for urban
driving scenarios revealed that enhanced task complexity, in
terms of scenario variety or nominal speeds, necessitates more
resources for the robot’s design. We demonstrated how restrict-
ing prior knowledge of object configurations within scenarios
can simplify designs and reduce resource requirements.

In future work, we aim to integrate additional agent archi-
tectures and motion planners beyond sampling-based. Addi-
tionally, rather than using upper bounds of FNRs and FPRs
to determine object detection, we plan to implement filtering
and sensor fusion techniques that incorporate considerations
of time and uncertainty into the detection and sensor selection
process. Moreover, we plan to conduct expanded case studies
that include a variety of tasks and robots, not limited to AVs,
and utilize state-of-the-art perception and decision-making
software.

REFERENCES

[1] Matthias Althoff, Markus Koschi, and Stefanie
Manzinger. Commonroad: Composable benchmarks
for motion planning on roads. In Proc. of the
IEEE Intelligent Vehicles Symposium, 2017. ISBN
9781509048045. doi: 10.1109/ivs.2017.7995802.

[2] Jonathan Backer and David Kirkpatrick. Finding
curvature-constrained paths that avoid polygonal ob-
stacles. In Proceedings of the Twenty-Third Annual
Symposium on Computational Geometry, SCG ’07, page
66–73, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595937056. doi:
10.1145/1247069.1247080. URL https://doi.org/10.1145/
1247069.1247080.

[3] Basler. Basler cameras, 2024. available online:
https://www.baslerweb.com.

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[5] Cars. Cars, 2024. available online: https://www.cars.com.
[6] Andrea Censi. Efficient neuromorphic optomotor heading

regulation. Proceedings of the American Control Confer-
ence, 2015-July:3854–3861, 2015. ISSN 07431619. doi:
10.1109/ACC.2015.7171931.

[7] Andrea Censi. A mathematical theory of co-design.
CoRR, abs/1512.08055, 2015. URL http://arxiv.org/abs/
1512.08055.

[8] Andrea Censi, Erich Mueller, Emilio Frazzoli, and Ste-
fano Soatto. A power-performance approach to com-
paring sensor families, with application to comparing
neuromorphic to traditional vision sensors. In 2015 IEEE
International Conference on Robotics and Automation
(ICRA), pages 3319–3326, 2015. doi: 10.1109/ICRA.
2015.7139657.

[9] Andrea Censi, Jonathan Lorand, and Gioele Zardini.
Applied Compositional Thinking for Engineering. 2024.
URL https://bit.ly/3H6pwMo. Work-in-progress book
(currently discussing with publishers).

[10] Bernard Chazelle. Approximation and decomposition
of shapes. Algorithmic and Geometric Aspects of
Robotics/ed. JT Schwartz, CK Yap, pages 145–185, 1985.

[11] Laurène Claussmann, Marc Revilloud, Dominique
Gruyer, and Sébastien Glaser. A review of motion plan-
ning for highway autonomous driving. IEEE Transac-
tions on Intelligent Transportation Systems, 21(5):1826–
1848, 2020. doi: 10.1109/TITS.2019.2913998.

[12] Anne Collin, Afreen Siddiqi, Yuto Imanishi, Yukti Matta,
Taisetsu Tanimichi, and Olivier de Weck. A multiobjec-
tive systems architecture model for sensor selection in
autonomous vehicle navigation. In Guy André Boy, Alan
Guegan, Daniel Krob, and Vincent Vion, editors, Com-
plex Systems Design & Management, pages 141–152,
Cham, 2020. Springer International Publishing. ISBN
978-3-030-34843-4. doi: 10.1007/978-3-030-34843-4
12.

[13] Anne Collin, Afreen Siddiqi, Yuto Imanishi, Eric Reben-
tisch, Taisetsu Tanimichi, and Olivier L. de Weck.

Autonomous driving systems hardware and software
architecture exploration: optimizing latency and cost
under safety constraints. Systems Engineering, 23
(3):327–337, 2020. doi: https://doi.org/10.1002/sys.
21528. URL https://incose.onlinelibrary.wiley.com/doi/
abs/10.1002/sys.21528.

[14] MMDetection3D Contributors. MMDetection3D:
OpenMMLab next-generation platform for general
3D object detection. https://github.com/open-
mmlab/mmdetection3d, 2020.

[15] J. C. Culberson and R. A. Reckhow. Covering polygons
is hard. In Proceedings of the 29th Annual Symposium
on Foundations of Computer Science, SFCS ’88, page
601–611, USA, 1988. IEEE Computer Society. ISBN
0818608773. doi: 10.1109/SFCS.1988.21976. URL
https://doi.org/10.1109/SFCS.1988.21976.

[16] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press, 2
edition, 4 2002. ISBN 9780521784511. doi: 10.1017/
CBO9780511809088. URL https://www.cambridge.org/
core/product/identifier/9780511809088/type/book.

[17] Van der Coput Johannes. Verteilungsfunktionen i &
ii. Nederl. Akad. Wetensch. Proc., 38:1058–1066, 1935.
URL https://cir.nii.ac.jp/crid/1571135650584248576.

[18] Joydeep Dey and Sudeep Pasricha. Machine learn-
ing based perception architecture design for semi-
autonomous vehicles. In Vipin Kumar Kukkala and
Sudeep Pasricha, editors, Machine Learning and Opti-
mization Techniques for Automotive Cyber-Physical Sys-
tems, pages 625–646. Springer International Publishing,
Cham, 2023. ISBN 978-3-031-28016-0. doi: 10.1007/
978-3-031-28016-0 22. URL https://doi.org/10.1007/
978-3-031-28016-0 22.

[19] Joydeep Dey, Wes Taylor, and Sudeep Pasricha. VESPA:
A framework for optimizing heterogeneous sensor place-
ment and orientation for autonomous vehicles. IEEE
Consumer Electronics Magazine, 10(2):16–26, 2021. doi:
10.1109/MCE.2020.3002489.

[20] Michael Erdmann. Understanding action and sensing
by designing action-based sensors. The International
Journal of Robotics Research, 14(5):483–509, 1995. doi:
10.1177/027836499501400506. URL https://doi.org/10.
1177/027836499501400506.

[21] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E.
Tseng. A linear time varying model predictive control
approach to the integrated vehicle dynamics control
problem in autonomous systems. In 2007 46th IEEE
Conference on Decision and Control, pages 2980–2985,
2007. doi: 10.1109/CDC.2007.4434137.

[22] Paolo Falcone, Francesco Borrelli, Jahan Asgari,
Hongtei Eric Tseng, and Davor Hrovat. Predictive active
steering control for autonomous vehicle systems. IEEE
Transactions on Control Systems Technology, 15(3):566–
580, 2007. doi: 10.1109/TCST.2007.894653.

[23] Flir. Flir cameras, 2024. available online:
https://www.flir.com.

[24] Shervin Ghasemlou, Jason M. O’Kane, and Dylan A.
Shell. Delineating boundaries of feasibility between
robot designs. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages

https://doi.org/10.1145/1247069.1247080
https://doi.org/10.1145/1247069.1247080
http://arxiv.org/abs/1512.08055
http://arxiv.org/abs/1512.08055
https://bit.ly/3H6pwMo
https://incose.onlinelibrary.wiley.com/doi/abs/10.1002/sys.21528
https://incose.onlinelibrary.wiley.com/doi/abs/10.1002/sys.21528
https://doi.org/10.1109/SFCS.1988.21976
https://www.cambridge.org/core/product/identifier/9780511809088/type/book
https://www.cambridge.org/core/product/identifier/9780511809088/type/book
https://cir.nii.ac.jp/crid/1571135650584248576
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1177/027836499501400506
https://doi.org/10.1177/027836499501400506

422–429, 2018. doi: 10.1109/IROS.2018.8593811.
[25] C. Giraud and B. Jouvencel. Sensor selection: a ge-

ometrical approach. In Proceedings 1995 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems. Human Robot Interaction and Cooperative Robots,
volume 2, pages 555–560 vol.2, 1995. doi: 10.1109/
IROS.1995.526271.

[26] Sehoon Ha, Stelian Coros, Alexander Alspach, James M.
Bern, Joohyung Kim, and Katsu Yamane. Computational
design of robotic devices from high-level motion spec-
ifications. IEEE Transactions on Robotics, 34(5):1240–
1251, 2018. doi: 10.1109/TRO.2018.2830419.

[27] John H Halton. On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional in-
tegrals. Numerische Mathematik, 2:84–90, 1960. doi:
https://doi.org/10.1007/BF01386213.

[28] G.E. Hovland and B.J. McCarragher. Dynamic sen-
sor selection for robotic systems. In Proceedings of
International Conference on Robotics and Automation,
volume 1, pages 272–277 vol.1, 1997. doi: 10.1109/
ROBOT.1997.620050.

[29] Lucas Janson, Brian Ichter, and Marco Pavone. De-
terministic sampling-based motion planning: Optimality,
complexity, and performance. The International Journal
of Robotics Research, 37(1):46–61, 2018. doi: 10.
1177/0278364917714338. URL https://doi.org/10.1177/
0278364917714338.

[30] Eungcheol Kim, J Kim, and Myoungho Sunwoo. Model
predictive control strategy for smooth path tracking
of autonomous vehicles with steering actuator dynam-
ics. International Journal of Automotive Technol-
ogy, 15:1155–1164, 2014. doi: https://doi.org/10.1007/
s12239-014-0120-9.

[31] Morteza Lahijanian, Maria Svorenova, Akshay A.
Morye, Brian Yeomans, Dushyant Rao, Ingmar Pos-
ner, Paul Newman, Hadas Kress-Gazit, and Marta
Kwiatkowska. Resource-performance tradeoff analysis
for mobile robots. IEEE Robotics and Automation
Letters, 3(3):1840–1847, 2018. doi: 10.1109/LRA.2018.
2803814.

[32] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[33] Steven M. LaValle. Planning Algorithms. Cambridge
university press, 11 2006. URL http://planning.cs.uiuc.
edu/.

[34] Steven M. LaValle. Sensing and filtering: A fresh
perspective based on preimages and information spaces.
Foundations and Trends® in Robotics, 1(4):253–372,
2012. ISSN 1935-8253. doi: 10.1561/2300000004. URL
http://dx.doi.org/10.1561/2300000004.

[35] Edward A. Lee. Cyber physical systems: Design chal-
lenges. In 2008 11th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363–369, 2008. doi: 10.1109/
ISORC.2008.25.

[36] Alexander Liniger, Alexander Domahidi, and Manfred
Morari. Optimization-based autonomous racing of 1: 43

scale rc cars. Optimal Control Applications and Methods,
36(5):628–647, 2015. doi: https://doi.org/10.1002/oca.
2123.

[37] Moritz Maierhofer, Moritz Klischat, and Matthias Al-
thoff. Commonroad scenario designer: An open-source
toolbox for map conversion and scenario creation for
autonomous vehicles. In Proc. of the IEEE Int. Conf.
on Intelligent Transportation Systems, pages 3176–3182,
2021.

[38] R Timothy Marler and Jasbir S Arora. The weighted
sum method for multi-objective optimization: new in-
sights. Structural and multidisciplinary optimiza-
tion, 41:853–862, 2010. doi: https://doi.org/10.1007/
s00158-009-0460-7.

[39] Ankur M. Mehta, Joseph DelPreto, Kai Weng Wong,
Scott Hamill, Hadas Kress-Gazit, and Daniela Rus. Robot
Creation from Functional Specifications, pages 631–648.
Springer International Publishing, Cham, 2018. ISBN
978-3-319-60916-4. doi: 10.1007/978-3-319-60916-4
36. URL https://doi.org/10.1007/978-3-319-60916-4 36.

[40] Dejan Milojevic, Gioele Zardini, Miriam Elser, Andrea
Censi, and Emilio Frazzoli. Resource-efficient task-
driven co-design of perception and decision making in
autonomous robots. Submitted to IEEE Transactions
on Robotics, 2024. ISSN 1552-3098. doi: 10.3929/
ethz-b-000672201.

[41] Luigi Nardi, David Koeplinger, and Kunle Olukotun.
Practical design space exploration. In 2019 IEEE 27th
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pages 347–358, 2019. doi: 10.1109/
MASCOTS.2019.00045.

[42] Alexandra Q. Nilles, Dylan A. Shell, and Jason M.
O’Kane. Robot design: Formalisms, representations, and
the role of the designer. CoRR, abs/1806.05157, 2018.
URL http://arxiv.org/abs/1806.05157.

[43] NVIDIA. Nvidia products, 2024. URL https://www.
nvidia.com. available online: https://www.nvidia.com.

[44] Jason M. O’Kane and Steven M. LaValle. Compar-
ing the power of robots. The International Jour-
nal of Robotics Research, 27(1):5–23, 2008. doi: 10.
1177/0278364907082096. URL https://doi.org/10.1177/
0278364907082096.

[45] Ouster. Ouster lidars, 2024. available online:
https://ouster.com.

[46] Art B. Owen. A randomized halton algorithm in R, 2017.
[47] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry

Yershov, and Emilio Frazzoli. A survey of motion
planning and control techniques for self-driving urban
vehicles. IEEE Transactions on Intelligent Vehicles, 1
(1):33–55, 2016. doi: 10.1109/TIV.2016.2578706.

[48] Guilherme V. Raffo, Guilherme K. Gomes, Julio E.
Normey-Rico, Christian R. Kelber, and Leandro B.
Becker. A predictive controller for autonomous vehicle
path tracking. IEEE Transactions on Intelligent Trans-
portation Systems, 10(1):92–102, 2009. doi: 10.1109/
TITS.2008.2011697.

[49] Fatemeh Zahra Saberifar, Shervin Ghasemlou, Dylan A
Shell, and Jason M O’Kane. Toward a language-theoretic
foundation for planning and filtering. The International

https://doi.org/10.1177/0278364917714338
https://doi.org/10.1177/0278364917714338
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/
http://dx.doi.org/10.1561/2300000004
https://doi.org/10.1007/978-3-319-60916-4_36
http://arxiv.org/abs/1806.05157
https://www.nvidia.com
https://www.nvidia.com
https://doi.org/10.1177/0278364907082096
https://doi.org/10.1177/0278364907082096

Journal of Robotics Research, 38(2-3):236–259, 2019.
doi: 10.1177/0278364918801503. URL https://doi.org/
10.1177/0278364918801503.

[50] Fatemeh Zahra Saberifar, Dylan A. Shell, and Jason M.
O’Kane. Charting the trade-off between design com-
plexity and plan execution under probabilistic actions.
In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 135–141, 2022. doi: 10.1109/
ICRA46639.2022.9811751.

[51] Sangok Seok, Albert Wang, Meng Yee Chuah, Dong Jin
Hyun, Jongwoo Lee, David M. Otten, Jeffrey H. Lang,
and Sangbae Kim. Design principles for energy-efficient
legged locomotion and implementation on the MIT Chee-
tah robot. IEEE/ASME Transactions on Mechatronics,
20(3):1117–1129, 2015. doi: 10.1109/TMECH.2014.
2339013.

[52] Sanjit A. Seshia, Shiyan Hu, Wenchao Li, and Qi Zhu.
Design automation of cyber-physical systems: Chal-
lenges, advances, and opportunities. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 36(9):1421–1434, 2017. doi: 10.1109/TCAD.
2016.2633961.

[53] Dylan A. Shell, Jason M. O’Kane, and Fatemeh Zahra
Saberifar. On the design of minimal robots that can solve
planning problems. IEEE Transactions on Automation
Science and Engineering, 18(3):876–887, 2021. doi: 10.
1109/TASE.2021.3050033.

[54] Ivan P Stanimirovic, Milan Lj Zlatanovic, and Marko D
Petkovic. On the linear weighted sum method for multi-
objective optimization. Facta Acta Univ, 26(4):49–63,
2011.

[55] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki.
The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19(4):72–82,
December 2012. doi: 10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.

[56] O. Takahashi and R.J. Schilling. Motion planning in
a plane using generalized voronoi diagrams. IEEE
Transactions on Robotics and Automation, 5(2):143–150,
1989. doi: 10.1109/70.88035.

[57] TurboSquid. Turbosquid 3d models, 2024. available on-
line: https://www.turbosquid.com/3d-models/3d-40-cars-
1703688.

[58] Vasileios Tzoumas, Luca Carlone, George J. Pappas, and
Ali Jadbabaie. LQG control and sensing co-design. IEEE
Transactions on Automatic Control, 66(4):1468–1483,
2021. doi: 10.1109/TAC.2020.2997661.

[59] Vijay V Vazirani. Approximation algorithms, vol-
ume 1. Springer Berlin, Heidelberg, 1 edition, 2001.
ISBN 978-3-662-04565-7. doi: https://doi.org/10.1007/
978-3-662-04565-7.

[60] Velodyne. Velodyne lidars, 2024. available online:
https://velodynelidar.com.

[61] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
FCOS3D: Fully Convolutional One-Stage Monocular 3D
Object Detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV)
Workshops, pages 913–922, October 2021.

[62] Yongsoon Yoon, Jongho Shin, H. Jin Kim, Yongwoon
Park, and Shankar Sastry. Model-predictive active

steering and obstacle avoidance for autonomous
ground vehicles. Control Engineering Practice,
17(7):741–750, 2009. ISSN 0967-0661. doi:
https://doi.org/10.1016/j.conengprac.2008.12.001.
URL https://www.sciencedirect.com/science/article/pii/
S0967066108002025.

[63] Gioele Zardini. Co-design of complex systems: From
autonomy to future mobility systems. PhD thesis, ETH
Zurich, 2023.

[64] Gioele Zardini, Andrea Censi, and Emilio Frazzoli. Co-
Design of Autonomous Systems: From Hardware Se-
lection to Control Synthesis. 2021 European Control
Conference, ECC 2021, pages 682–689, 2021. doi:
10.23919/ECC54610.2021.9654960.

[65] Gioele Zardini, Dejan Milojevic, Andrea Censi, and
Emilio Frazzoli. Co-design of embodied intelligence:
A structured approach. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 7536–7543, 2021. doi: 10.1109/IROS51168.2021.
9636513.

[66] Gioele Zardini, Zelio Suter, Andrea Censi, and Emilio
Frazzoli. Task-driven modular co-design of vehicle
control systems. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pages 2196–2203, 2022.
doi: 10.1109/CDC51059.2022.9993107.

[67] Gioele Zardini, Nicolas Lanzetti, Andrea Censi, Emilio
Frazzoli, and Marco Pavone. Co-design to enable user-
friendly tools to assess the impact of future mobility
solutions. IEEE Transactions on Network Science and
Engineering, 10(2):827–844, 2023. doi: 10.1109/TNSE.
2022.3223912.

[68] Yulin Zhang and Dylan A. Shell. Abstractions for
computing all robotic sensors that suffice to solve a plan-
ning problem. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 8469–8475,
2020. doi: 10.1109/ICRA40945.2020.9196812.

[69] Qi Zhu and Alberto Sangiovanni-Vincentelli. Codesign
methodologies and tools for cyber–physical systems.
Proceedings of the IEEE, 106(9):1484–1500, 2018. doi:
10.1109/JPROC.2018.2864271.

APPENDIX

A. Appendix: Modeling a task

Consider a robot R, operating within the workspace W ⊂
R3. The robot starts its mission from an initial configuration
denoted by γstart ∈ Γ and seeks to reach a goal area denoted
as G.2

Definition 15 (Object Class Distribution). An object class
distribution O is defined as a tuple:

O := ⟨C,P,λ⟩,

where the class of the object is denoted by C, and P represents
the prior configurations, such that P ⊆ π3(C) = Q for a
particular class. This prior essentially outlines the allowed
configurations for objects of the specific class. The distribution

2We consider G ⊂ R2, but in general the goal G can manifest in various
forms, including a terminal configuration qend, a volume in R3 to be reached,
following another object, or the ability to move for a specified duration.

https://doi.org/10.1177/0278364918801503
https://doi.org/10.1177/0278364918801503
https://www.sciencedirect.com/science/article/pii/S0967066108002025
https://www.sciencedirect.com/science/article/pii/S0967066108002025

TABLE I
TABLE OF SYMBOLS

Symbol Meaning
A decision-making agent
appear ∈ AP class appearances
B robot’s body
C, C ∈ C object class, instance of an object class
q ∈ Q configuration space
γ ∈ Γ configuration space of the robot
c cost function
env ∈ E environment
mo ∈ MO mounting orientations (yaw and pitch) in R2

mp ∈ MP mounting position in R3

mpp ∈ MPP mounted perception pipeline
mppcc mounted perception pipeline class coverage
MPPC set of mounted perception pipeline class coverage
O object class distribution
pcp perceptual collision prediction map
pp ∈ PP perception pipeline
PR task perception requirements
P the object class configurations prior
ψ ∈ Ψ occupancy query space
R robot
S, S scenario, instance of a scenario
SH robot’s 3D shape
sh map which returns the footprint from a configuration
T robot’s task
tq map that generates task queries of an agent
q̄ ∈ Q̄ object class trajectories

of objects follows a Poisson distribution, where λi represents
the expected number of objects for a given class.

Definition 16 (Scenario). A scenario is given by

S := ⟨W, fΓ , fR2 , fE, {Oi}i∈{1,...,N}⟩,

where Γ ∼ fΓ(γstart), R2 ∼ fR2(G) and E ∼ fE(env) are the
distributions governing the initial configuration of the robot,
the goal area of the robot, and the environmental conditions,
respectively. The scenario includes N object classes with a
corresponding object class distribution Oi.

A scenario instance

S = ⟨W, γstart,G, env, {Ci}i∈{1,...,M}⟩

represents a concrete realization of a scenario S, where the
initial configuration, goal, and environment are drawn from
their respective distributions fΓ , fR2 , and fE. Moreover, M
number of object class instances are drawn from the corre-
sponding Poisson distributions.

B. Appendix: Background on a monotone theory of co-design

The reader is assumed to be familiar with posets and basic
concepts of order theory (a good source is [16]).

a) Formulating co-design problems: The atom of the
theory is the notion of a MDPI, through which we will model
different components of the autonomy stack.

Definition 17. Given posets F,R, (mnemonics for func-
tionalities and resources), we define a MDPI as a tu-
ple ⟨Id, prov, req⟩, where Id is the set of implementations,
and prov, req are maps from Id to F and R, respectively:

F prov←−− Id req−−→ R.

We compactly denote the MDPI as d : F R. Furthermore,
to each MDPI we associate a monotone map d̄, given by:

d̄ : Fop ×R → ⟨P(Id),⊆⟩
⟨f∗, r⟩ 7→ {i ∈ Id : (prov(i) ⪰F f) ∧ (req(i) ⪯R r)},

where (·)op reverses the order of a poset. The expres-
sion d̄(f∗, r) returns the set of implementations (design
choices) S ⊆ Id for which functionalities f are feasible with
resources r. A MDPI is represented in diagrammatic form
as a block with green wires on the left for functionalities,
and dashed red ones on the right for resources, as visualized
in Fig. 9.

Remark 18 (Monotonicity). What does monotonicity mean
in this context? Consider a MDPI for which d̄(f∗, r) = S:
• One has: f ′ ⪯F f ⇒ d̄(f ′∗, r) = S′ ⊇ S. Intuitively,

decreasing the provided functionalities will not increase the
required resources;

• One has: r′ ⪰R r ⇒ d̄(f∗, r′) = S′′ ⊇ S. Intuitively,
increasing the available resources cannot decrease the pro-
vided functionalities.

Remark 19 (Populating the models). The presented frame-
work is very flexible. In practice, one populates the MDPIs via
analytic relations (e.g., cost functions), numerical analysis of
closed-form relations (e.g., solving optimal control problems),
and in a data-driven, on-demand fashion (e.g., via POMDPs,
simulations, or by solving instances of optimization problems).
For detailed examples related to mobility and autonomy, please
refer to [64, 65, 67, 63, 66, 9].

One can compose individual MDPIs in several ways to form
a co-design problem (i.e., a multigraph of MDPIs, where nodes
are MDPIs, and edges their interconnections), which is again
a MDPI (i.e., closure). This makes the presented framework
practical to decompose a large problem into smaller ones, and
to interconnect them3 Series composition happens when the
functionality of a MDPI is required by another MDPI (e.g.,
information acquired by a sensor is processed by an estimator).
The symbol ⪯ is the posetal relation, representing a co-design
constraint: the resource a problem requires cannot exceed the
functionality another problem provides. Parallel composition,
instead, formalizes decoupled processes happening together.
Finally, loop composition describes feedback.

b) Solving co-design problems: Given a MDPI, we es-
sentially have two queries. First, given some desired func-
tionalities, find the optimal design solutions which minimize
resources (FixFunMinRes). Alternatively, given some available
resources, find the optimal design choices which maximize
functionalities (FixResMaxFun).

Definition 20. Given a MDPI d, one defines monotone maps
• hd : F → AR, mapping a functionality to the minimum

antichain of resources providing it;
• h′d : R → AF, mapping a resource to the maximum

antichain of functionalities provided by it.

Solving MDPIs requires finding such maps. If such maps
are Scott continuous, and posets are complete, one can rely on

3A detailed list of compositions is provided in [9, 63]. Formally, their
specification makes the category of design problems a traced monoidal
category, with locally posetal structure.

Kleene’s fixed point theorem to design an algorithm solving
both queries (and returning the related optimal design choices).

Interestingly, the resulting algorithm is guaranteed to con-
verge to the set of optimal solutions, or to provide a certificate
of infeasibility. Furthermore, the complexity of solving such
problems is only linear in the number of options available
for each component (as opposed to combinatorial). For more
details, refer to [9, 63].

C. Appendix: Modeling from task to perception requirements

Planner MDPI: The more scenario instances are re-
quired, the more queries are needed by the planner, as detailed
in Lemma 21. Higher acceleration and deceleration expand
the range of possible queries, enabling faster achievement
of goals in scenario instances. A smaller minimum turning
radius increases the diversity of occupancy queries and the
robot’s capability to navigate through complex scenarios, such
as tight passages that a large turning radius would not permit.
Consequently, we utilize the opposite of a poset for minimum
turning radius. Additionally, greater acceleration necessitate
more computational resources to quickly process planning
strategies. Extending the average speed requires improved dy-
namics with quicker acceleration, or a more efficient planner,
which increases the need for compute resources and occupancy
queries.

Lemma 21. The task occupancy queries tq is monotone in
the task, as shown in Fig. 10.

Proof: Consider two tasks T1 ⊆ T2. We have

tq(A, T1) ⊆
(
tq(A, T1) ∪ tq(A, T2 \ T1)

)
= tq(A, T2).

Perceptual Collision Prediction MDPI: The class
footprintop is the planar shape of the class in 2D, generated
by the map sh. The resources include class trajectories Q̄
and the robot’s footprint from shR. Lemma 22 illustrates
the monotonic relationship between class trajectories and
occupancy queries, indicating that an increase in occupancy
queries leads to an equal or greater number of class trajecto-
ries. This relationship also applies to class dynamics, altering
class dynamics results in new class trajectories. Specifically,
higher acceleration and deceleration and a smaller minimum
turning radius produce a broader range of class trajectories.
In Lemma 23, the monotonicity of the robot’s footprint with
occupancy queries is shown, implying a larger robot’s footprint
is required as queries increase, assuming a fixed set of class
trajectories. For example, if a robot’s footprint encompasses
R2, no class trajectory can collide with it, as the robot
already occupies all available space. Similarly, a larger class
footprintop indicates earlier collisions with the robot, thus
generating fewer class trajectories. This inverse relationship
uses the opposite of a poset for the class footprintop.

Lemma 22. The class trajectories from pcp are monotone
with respect to the occupancy queries as shown in Fig. 11.

Proof: Consider two query sets Ψ1 ⊆ Ψ2. We have

pcp(Ψ1, Ci) ⊆
(
pcp(Ψ1, Ci) ∪ pcp(Ψ2 \Ψ1, Ci)

)
= pcp(Ψ2, Ci).

Lemma 23. The robot’s footprint is monotone with respect to
the occupancy queries as shown in Fig. 11.

Proof: A larger robot’s footprint can exclude more class
trajectories, according to Def. 7 and Def. 9.

Prior Check MDPI: According to Lemma 24, priors that
encompass more class configurations tend to filter out fewer
configurations during priorcheck, resulting in more perception
requirements. Given the relations established in Lemma 21
and Lemma 22, where more complex tasks generate more
class trajectories, it follows, as demonstrated in Lemma 25,
that increased task complexity (more class trajectories) also
amplifies the perception requirements.

Lemma 24. The class configurations in the class trajectories
are monotone with respect to the class configurations prior as
shown in Fig. 12.

Proof: Consider two priors Pi,1 ⊆ Pi,2 and a class
configuration set Θi. If Θi ⊆ Pi,1 then it holds also Θi ⊆ Pi,2.
If Θi ⊆ Pi,2 \ Pi,1, then Θi ⊆ Pi,2 but Θi ∩ Pi,1 = ∅.
Lemma 25. The perception requirements PR are monotone
in the task, respectively in the class trajectories (Fig. 12).

Proof: Consider two tasks T1 ⊆ T2. From Lemma 21 we
know that occupancy queries are monotone in the task and
from Lemma 22 we know that class trajectories are monotone
with the queries. We have

PR(A, T1) ⊆
(
PR(A, T1) ∪ PR(A, T2 \ T1)

)
= PR(A, T2).

Robot body MDPI: As visualized in Fig. 13, this MDPI
provides the robot’s dynamics functionality, parameterized as
minimum turning radius (considered opposite of a poset),
maximum acceleration, and deceleration. Additionally, it out-
lines mounting configurations for sensors within SE(3), the
robot’s footprint shR in R2, the maximum payload mass
in kg the robot can carry, its auxiliary power capacity in
W for powering hardware such as sensors and computers,
and the driving range in m representing the robot’s driving
range without recharge. Enhanced robot’s dynamics, such as
greater acceleration/deceleration and a reduced turning radius,
typically necessitate higher fixed costs and operational costs.
Similarly, increasing the payload mass and auxiliary power
capacity implies a need for a more costly or larger robot’s
shape. Boosting the driving range involves augmenting the
battery size, impacting both fixed and operational costs. Addi-
tional sensor mounting configurations may necessitate a larger
robot’s shape to accommodate the setup. As aforementioned,
a larger robot’s footprint can potentially reduce perception
requirements by obstructing more class trajectories. Achieving
a larger robot’s footprint requires a correspondingly larger
robot’s shape.

Computing MDPI: As the demand for compute increases
to accommodate more sophisticated software algorithms or
larger data volumes, the specifications of the computing units
must be scaled up accordingly. This, in turn, impacts the
overall cost of the computing hardware, its mass, and its power
consumption. The Computing MDPI is illustraded in Fig. 14.

�������

�����������
����������
����������

����������
�������

��������
��������

�������

�����������

��
�����

���������

������
�����������
��������

����������
���������

	���������

�
����
������������

��������
��������� �
����

������������

���

�	������
�����

�
����
��������

���������
�������

�
����
�����������
�
����
�������������
�����

�
����
�������������

�����

�����������
������������

�������������
������������

�����������
��	�����

�������

�����������
��	�����

�
����
�����������

�
����
�����������

��������
�����

�����������
�����������

���������
�������������

��������
���������

����������
�����������

���������
�������������

��������
���������

��������
��������

����
�����
�����

���
����
����

���	����
�����

���	����
�����

�������

�

�

�

�

�

�����
����
����

�����
����
����

���������

����������
�
����

�������

����
������

����
�����

�������

����������
�
����

��������
�����

Fig. 9. The co-design diagram for the design of a mobile robot tailored to accomplish a task, including a collection of scenario instances and class instances,
aiming to achieve specified average speed and driving range. The class instances include class dynamics, class footprintop, class appearances, and class
configurations prior. The objective is to minimize the fix cost and operational cost.

Planner

occupancy queries

compute

robot’s dynamics

task

average speed

Fig. 10. The planner MDPI which implements a motion planner for the
robot to accomplish scenario instances of a task and thereby providing average
speed, while requiring occupancy queries Ψ, compute and robot’s dynamics

Perceptual Collision Prediction

class trajectories

robot’s footprint

occupancy queries

class dynamics

class footprintop

Fig. 11. The Perceptual Collision Prediction MDPI which implements the
function pcp. The functionalities are the occupancy queries for the planner,
the class dynamics and the class footprintop. The required resources are the
class trajectories and robot’s footprint.

Prior Check
perception requirements

class configurations prior

class trajectories

Fig. 12. The Prior Check MDPI, which implements priorcheck, provides
class configurations prior and class trajectories functionalities and requires
perception requirements.

D. Appendix: Sensor selection and placement problem

Coverage MDPI: An enhancement in perception require-
ments necessitates an increase in perception coverage, which
is demonstrated in Lemma 26.

Lemma 26. The perception requirements PR are monotone
with perception coverage, as shown in Fig. 15.

Robot Body

fixed cost

operational cost

robot’s shape

mounting configurations

payload mass

auxiliary power

driving range

robot’s dynamics

robot’s footprint

Fig. 13. The Robot body MDPI which provides the dynamics dyn, the
mounting configurations for sensors each in SE(3), the body footprint shR,
the payload mass in kg, the auxilary power in W and the driving range in m,
while requiring robot’s shape SH, fixed cost in CHF and operational costs in
CHF/m.

Computing

cost

mass

power

compute

Fig. 14. The Computing MDPI which implements the computing units.
It provides compute and requires cost in CHF, the mass in kg and power
consumption in W.

Proof: Consider the first constraint in Eq. (1), represent-
ing the sensor selection and placement optimization problem.
Clearly, if one increases the PR set, one needs to increase the
union of selected perception pipeline class coverage mppcc,
representing the perception coverage.

Mounted Perception Pipelines MDPI: In the MDPI
visualized in Fig. 16, the perception performance considers the
opposite order of fnr and fpr upper limits, where a pipeline

Coverage
perception coverageperception requirements

Fig. 15. The Coverage MDPI which provides perception requirements PR
and requires perception coverage as a set of mppcc.

ppa dominates ppb if it has lower upper bounds for fnr and fpr
across all class configurations qi, class appearances appeari
and environments env.

Adding a class configuration to the perception coverage
or new class appearances may necessitate a change to a
more capable perception pipeline with improved perception
performance to ensure coverage under the defined threshold ϵ.
Similarly, enhancing perception coverage with new class con-
figurations or class appearances might necessitate additional
mounting configurations.

A larger robot’s shape may introduce self-occlusion, impact-
ing the FoV and necessitating additional sensor placements
for coverage. While a larger robot’s footprint can reduce per-
ception requirements by obstructing potential class trajectories
as shown in Fig. 11, balancing between robot’s footprint and
robot’s shape becomes crucial. A theoretically ideal robot’s
shape would generate a vast robot’s footprint but have no
elevation, thereby minimizing self-occlusion and perception
requirements. Although this poses practical challenges in
dynamics and scenario feasibility, where a larger robot’s shape
usually leads to a larger turning radius.

Mounted Perception
Pipelines

mounting configurations

perception performance

robot’s footprint

perception coverage

class appearances

robot’s shape

Fig. 16. The Mounted Perception Pipelines MDPI which provides the
perception coverage, the set of all class appearances appear in the task and
the robot’s shape SH as functionalities. The required resources are the set of
mounting configurations in SE(3), the perception performance and the robot’s
footprint shR.

Perception Pipelines MDPI: The Perception Pipelines
MDPI is illustrated in Fig. 17.

Perception Pipelines
perception performance

cost

mass

power

compute

Fig. 17. The Perception Pipelines MDPI which provides the perception
performance and requires cost in CHF, mass in kg, power in W and compute.

Finally, the Sensor Selection and Placement MDPI is shown
in Fig. 18, which is the composition of the Coverage, Mounted
Perception Pipelines and Perception Pipelines MDPIs.

Sensor Selection
&

Placement

cost
mass
power
compute
mounting configurations
robot’s footprint

perception requirements

class appearances

robot’s shape

Fig. 18. The Sensor Selection and Placement MDPI which is the composition
of the Coverage, Mounted Perception Pipelines and Perception Pipelines
MDPIs.

Fig. 19. Overview of the sensor selection and placement process: starting
with a catalog of robot bodies, sensor positions, orientations, perception
pipelines, and motion planners, alongside with scenarios. The workflow splits
into agent activities (left) that transform task queries into perception require-
ments, and perception activities (right) that determine class configurations
detectable by mounted perception pipelines. The process concludes with the
selection of optimal pipelines to minimize costs while satisfying perception
requirements.

E. Appendix: Solving the Sensor Selection and Placement Set
Cover Problem

The nature of Def. 14 closely resembles the weighted set
cover problem [59], since it also tries to cover a given set by
a collection of subsets while minimizing a cost function.

Definition 27 (Weighted set cover problem). Given a set U
of N elements (called universe), a collection of subsets of U ,
S = {S1, . . . , SK}, and a cost function c : Si → R>0, find a
minimum cost sub-collection of S that covers all elements of
U .

The weighted set cover problem is NP-complete. There
exist approximations, such as greedy algorithms or ILP. In
addressing Def. 14, we choose the ILP relaxation of the set

cover problem, as outlined in Eq. (2). In this ILP, each set
Si is associated with a variable xi ∈ {0, 1}, where xi = 1 if
and only if set Si is selected. The constraint mandates that for
each element e ∈ U , at least one of the sets containing it is
chosen [59].

min

K∑
i=1

c(Si) · xi

s.t.
∑

i:e∈Si

xi ≥ 1 ∀e ∈ U,

xi ≤ 1 ∀i ∈ {1, . . . ,K},
xi ∈ N0 ∀i ∈ {1, . . . ,K}.

(2)

To formulate the Def. 14 as a weighted set cover problem,
we need to make certain approximations. This is necessary
because both the task perception requirements, denoted as
PR(A, T), and the coverage of mounted perception pipelines
for different classes, denoted as MPPC, are infinite sets. In
the next paragraphs we show how we formulate the sensor
selection and placement problem as a weighted set cover
problem.

Class configurations in SE(2): The first approxima-
tion involves constraining all class configurations in both
PR(A, T) and MPPC to exist within SE(2). Specifically,
each class configuration is now defined as a tuple consisting of
position in Cartesian coordinates and the relative orientation
θ with respect to the robot frame, denoted as qi = ⟨x, y, θ⟩.
As these class configurations are now geometric in nature and
reside in SE(2), the problem closely resembles the polygon
covering problem [15], which is a specific case of the set
cover problem. In the weighted polygon covering problem, the
objective is to cover a target polygon using a set of provided
polygons, each associated with a specific cost. This prob-
lem permits overlapping among the polygons. However, the
class configurations are represented in three-dimensional space
(SE(2)) and are essentially volumes rather than polygons.
Therefore, we need a method to reduce the dimensionality
of these configurations.

From class configurations to polygons: Given the ori-
entation constraint −π ≤ θ ≤ π, the class configurations
are sorted into θ-intervals, such as {[−π,−π + ∆θ), [−π +
∆θ,−π+2·∆θ) . . . [π−∆θ, π)}. The subsequent step involves
transforming the position coordinates of the class configuration
within each θ-interval into a set of polygons. Here, polygons
represent surfaces in R2 with location considerations. This set
of polygons is termed a multi-polygon, where the polygons in
the set are not necessarily contiguous. As a result, a set of
multi-polygons is generated, with each element corresponding
to a distinct θ-interval. Although various methods can be
devised for this transformation, we stick to a worst-case anal-
ysis approach for consistency. The detailed description of this
process is beyond the scope of this paper. The resulting set of
multi-polygons is denoted as compressed class configurations.

Definition 28 (Compress). compress is a mapping that gener-
ates a set of multi-polygons µ from a set of class configurations
Qi and T number of class configurations θ-intervals.

compress : POW(Qi)→
∏

j∈{1,...,T}

POW(R2),

x [m]

−10 −5 0 5 10

y
[m

]

−10

−5

0

5

10

(a) Unit grid cells.

x [m]

−10 −5 0 5 10

y
[m

]

−10

−5

0

5

10

(b) Polar grid with logarithmic scale.

Fig. 20. The left image shows a uniform grid, while the right reports a
polar grid with logarithmically scaled radial distances. Red dots, representing
Gaussian synthetic class configurations, intersect with blue shaded cells.

where T ∈ N+.

Applying compress to PR(A, T) and MPPC results in
PR(A, T) and MPPC, where all sets of class configurations
are now expressed as compressed class configurations. Specifi-
cally, when compress is applied for each environment in PR,
nested sets are obtained for each environment, object class,
and θ interval.

Discretization: To formulate the weighted set cover
problem with the obtained polygons, we need to discretize
PR(A, T). A straightforward approach is to create a grid with
cells, which can be made uniform as shown in Fig. 20a, e.g.,
1 by 1 meters in size. We use a polar grid with logarithmic
scaling for radial distance as illustrated in Fig. 20b, providing
higher granularity for smaller distances and aligning more
with sensor perception dynamics which scan the environment
radially. This means for each multi-polygon in PR(A, T),
which corresponds to a certain environment, a certain class
and a certain θ-interval, we obtain a discretized multi-polygon
which is again a multi-polygon. These discretized perception
requirements are represented as P̂R(A, T). An example of
discretized perception requirements of an AV driving in an
urban environment, for a car class object for two different
orientations is shown in Fig. 21.

x [m]

−20 −10 0 10 20

y
[m

]

−20

−10

0

10

20

(a) Car class for θ-interval
[−100◦,−90◦).

x [m]

−20 −10 0 10 20

y
[m

]

−20

−10

0

10

20

(b) Car class for θ-interval
[−180◦,−170◦).

Fig. 21. Example of discretized and compressed perception requirements of
a car class (blue) for different orientations relative to the ego vehicle (grey
car).

In Fig. 22, examples of compressed mppcc are depicted

x [m]
−40 −20 0 20 40

y
[m

]

−40

−20

0

20

40

x [m]
−40 −20 0 20 40

y
[m

]

−20

0

20

40

x [m]
−20 0 20

y
[m

]

−20

0

20

x [m]
−40 −20 0 20 40

y
[m

]

−40

−20

0

20

40

x [m]
−40 −20 0 20 40

y
[m

]

−40

−20

0

20

40

x [m]
−40 −20 0 20 40

y
[m

]

−40

−20

0

20

40

x [m]
−40 −20 0 20 40

y
[m

]

−40

−20

0

20

40

x [m]
−50 0 50

y
[m

]

−50

0

50

x [m]
−50 0 50

y
[m

]

−50

0

50

Fig. 22. Examples of compressed mounted perception pipeline class
coverage mppcc corresponding to the setting in Fig. 21 with θ-interval
[−100◦,−90◦). Each plot corresponds to a unique mounted perception
pipeline.

for the class and robot specified in Fig. 21 with θ-interval
[−100◦,−90◦). These polygons aim to cover the upper poly-
gon shown in Fig. 21. Each polygon is associated with certain
costs, and the objective is to minimize the total cost.

With all the components in place, we can formulate the
problem in Def. 14 as an ILP using Eq. (2). Once again, we
use the binary vector x, where each element xi ∈ {0, 1} and
represents a decision variable. The variable xi = 1 if and only
if the mounted perception pipeline mppi is chosen.

Cost Functions: We extend the ILP from Eq. (2) to
a multi-weighted problem formulation by incorporating W
cost functions denoted as c. Each cost function cj associates
a mounted perception pipeline mpp with normalized costs,
where 0 ≤ cj(mpp) ≤ 1. These costs may represent various
factors such as the price, mass, or power consumption of the
sensor. Additionally, each cost cj is scaled by a cost weight
wj , ensuring that the sum of all weights equals one, i.e.,∑W

j=1 wj = 1. The cost function weights are generated by
the Halton sequence [27, 46], a generalized form of the one-
dimensional Van der Corput sequence [17, 33], where we
only take sampled points which sum up to one. This process
involves generating a series of weights with low discrepancy
and addressing the optimization problem for each weight
set. Through this incremental search, we explore the Pareto
front of the multi-objective optimization problem with a linear
weighted sum [54, 38].

Constraints: The initial constraint within the ILP ensures
the coverage of each element in P̂R(A, T). This implies
that for every polygon within P̂R(A, T), we must ascertain
which mpp is providing coverage. To achieve this, we extract
the corresponding multi-polygon from mpp that shares the
same object class, environment, and θ-interval. By “cover”
we mean that a multi-polygon µi covers another polygon µj

if µj ⊆ µi. Consequently, a binary matrix A is populated,

possessing dimensions N × Lmpp, where N represents the
number of polygons in P̂R(A, T) and Lmpp denotes the
number of mounted perception pipelines. The entry in the
n-th row and l-th column of matrix A is denoted as anl,
with anl = 1 indicating that polygon n is covered by mppl,
and anl = 0 otherwise. Subsequently, another binary matrix,
denoted as F , is constructed with dimensions D×Lmpp, where
D corresponds to the number of mounting positions. Matrix F
indicates which mounted perception pipelines share the same
mounting positions. In a given row of F , all entries set to 1
signify mounted perception pipelines with identical mounting
positions. Finally we can find the mounted perception pipelines
which cover P̂R(A, T), while minimizing certain cost cj by
solving the ILP in Eq. (3).

min

L∑
i=1

W∑
j=1

wjcj(mppi) · xi

s.t. A · x ≥ [1 . . . 1]
T

,

F · x ≤ [1 . . . 1]
T

,

xi ≤ 1 ∀i ∈ {1, . . . , L},
xi ∈ N0 ∀i ∈ {1, . . . , L},
W∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,W.

(3)

F. Appendix: Design of experiments

TABLE II
VARIABLES, OPTIONS AND SOURCES FOR THE AV CO-DESIGN PROBLEM.

Variable Option Source

Vehicle bodies Smart Fortwo, Chrysler Pacifica,
Mercedes-Benz C63 [5]

Lidars Velodyne: Alpha Prime, HDL 64,
HDL 32; OS2: 128, 64 [60, 45]

Cameras Basler: acA1600-gm, acA1500-
um, acA7-gm; FLIR: Point Grey [3, 23]

Object Detection
Models FCOS3D, Pointpillars [14, 61, 32]

Mounting Orien-
tation Yaw

−135.0◦, −90.0◦, −45.0◦, 0.0◦,
45.0◦, 90.0◦, 135.0◦, 180.0◦, [-]

Mounting Orien-
tation Pitch 0◦ [-]

Motion Planner Lattice panner with A*, RRT,
RRT* [55, 1]

Computer

Jetson Nano, Orin Nano, Xavier
NX, Orin NX, AGX Orin 64GB,
AGX Orin 32GB, AGX Xavier
32GB

[43]

Catalogs in Tab. II: The 3D meshes of the car bodies
are sourced from TurboSquid [57]. Real sensor measurements
from the nuScenes open-source dataset [4], along with state-
of-the-art 3D object detection algorithms from the MMDe-
tection3D library [14], are used to determine the FNRs and
the FPRs for different object classes. The mounting position
options are visualized in Fig. 23. We utilize motion planners
from the OMPL [55] and CommonRoad [1] libraries, including
RRT, RRT*, and a lattice planner enhanced with motion
primitives and an A* search algorithm. The three different
motion planners operate with 1 s and 2 s planning horizons,
which define the time into the future for which a planner
calculates its trajectory.

Fig. 23. Exemplary mounting positions for two different vehicles.

Remark. We acknowledge that the catalog may not represent
the latest advances in motion planning and perception. The
designer is free to create their own catalog.

G. Appendix: Results
In Fig. 24 we show the influence of higher planning horizon

leading to higher resource requirements on the selected sensors
and perception algorithms by fixing the motion planner and
the vehicle body. The figure compares the resources required
- power, mass, price, and computation - for different tasks
for planning horizons of one and two seconds. Each point
represents the minimum resource solution for a given task
and time horizon. In Fig. 25, we keep the vehicle body and
planning horizon constant, but compare the resource trade-
offs of using RRT* versus a lattice planner. This comparison
aims to visualize the resource differences between motion
planners, as expected from Fig. 2, and to highlight the impact
of the planning strategy on the sensor selection and placement
process.

50 100 150 200

Number of scenarios |T |
20000

25000

30000

35000

40000

Pr
ic

e
(C

H
F)

(a) Price comparison.

50 100 150 200

Number of scenarios |T |

1400

1600

1800

2000

2200

2400

M
as

s
(g

)

(b) Mass comparison.

50 100 150 200

Number of scenarios |T |

15

20

25

30

35

Po
w

er
(W

)

(c) Power comparison.

50 100 150 200

Number of scenarios |T |

70

80

90

100

110

120

C
om

pu
ta

tio
n

(G
FL

O
PS

)

(d) Computation comparison.

Fig. 24. Higher planning horizons for the same planner and vehicle body
require more resources for different tasks. Here we show the lattice planner
with A* search and a hatchback vehicle body.

In Figs. 6, 27 and 31, we display the implementations for
the minimal computation solutions. The NVIDIA Jetson Orin
Nano was chosen alongside the lattice motion planner using
A* search for all cases. Notably, a camera sensor was never
chosen for these solutions. The implementations aiming for
minimal mass are shown in Figs. 5, 29 and 30, where there is
a notable preference for cameras, predominantly coupled with
the most powerful computing unit, the NVIDIA Jetson AGX

50 100 150 200

Number of scenarios |T |
20000

25000

30000

35000

40000

Pr
ic

e
(C

H
F)

(a) Price comparison.

50 100 150 200

Number of scenarios |T |

1400

1600

1800

2000

2200

M
as

s
(g

)

(b) Mass comparison.

50 100 150 200

Number of scenarios |T |

15

20

25

30

35

Po
w

er
(W

)

(c) Power comparison.

50 100 150 200

Number of scenarios |T |

70

80

90

100

110

120

C
om

pu
ta

tio
n

(G
FL

O
PS

)

(d) Computation comparison.

Fig. 25. Resource comparison between RRT* planner and lattice planner
with A* search for the same vehicle body (hatchback) and tasks.

Orin 64. In Figs. 7, 26 and 28 we present the implementations
for the AV design with minimal power needs. Similarly as for
the minimal computation, only one or two lidars are chosen.

Moreover, we present implementations tailored for the most
cost-effective AV design in Figs. 26, 27, 29 and 31. Every
implementation features at least one lidar sensor. Except for
the cases highlighted in Figs. 26 and 31, corresponding to
the most complex task and the task with restricted prior, all
configurations additionally incorporate camera sensors. For
the most complex task containing the most scenarios, highest
nominal speed and no prior restriction, each implementation
includes at least one lidar sensor.

H. Appendix: Discussion
Our results show that increased task complexity, manifested

by more scenarios, higher speeds, or broader prior knowl-
edge, requires more resources for AV design. Each additional
scenario may introduce new occupancy queries and prior
knowledge, expanding the perception requirements. Higher
speeds require sensor pipelines to detect objects at greater
distances to account for the faster movement of the AV and
the faster dynamics of the surrounding objects. In addition,
a wider range of possible class configurations based on prior
knowledge increases the perception requirements, calling for
more advanced sensor pipelines that consume additional re-
sources.

Motion planners that generate broader occupancy query
distributions require enhanced sensing capabilities, thereby
increasing the resource allocation to sensor pipelines to pro-
vide the required information. The broader occupancy query
distributions result from either extended planning horizons, as
illustrated in Fig. 24, or the inherent strategy of the motion
planner, as illustrated in Fig. 2 and Fig. 25. In the optimization
process for minimal resource solutions at the lowest aver-
age speeds, the RRT* planner was consistently not selected.
However, when the requirement shifted towards achieving
the highest average speeds, the RRT* planner became the
exclusive choice, paired with the vehicle body with the highest

40000 60000 80000 100000 120000
Price (CHF)

10

20

30

40

50

60

70

80

90

100

Po
w

er
(W

)

C

B

A

|T |= 9
|T |= 25
|T |= 90
|T |= 205

Planner: Astar
Computer: nvidiaJetsonOrinNano
Power: 63.0 W
Cost: 54725.0 CHF

Sensor: OS264, Algorithm: pointpillars
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRT
Computer: nvidiaJetsonOrinNano
Power: 40.1 W
Cost: 65355.0 CHF

Sensor: alphaprime, Algorithm: pointpillars
Sensor: Ace13gmfl12, Algorithm: fcos3d

B

Planner: RRT
Computer: nvidiaJetsonOrinNano
Power: 27.0 W
Cost: 45325.0 CHF

Sensor: hdl32, Algorithm: pointpillars

C

Fig. 26. Pareto front of price and power across tasks, where tasks with
more scenarios demand more resources and encompass those with fewer
scenarios. Implementations for point A, B, and C are visualized vertically.
B and C indicate the least power usage for the most and least complex tasks,
respectively, while A shows the minimum price for the most complex task.

40000 60000 80000 100000 120000
Price (CHF)

0

200

400

600

800

1000

C
om

pu
ta

tio
n

(G
FL

O
PS

)

C

B

A

|T |= 9
|T |= 25
|T |= 90
|T |= 205

Planner: Astar
Computer: nvidiaJetsonOrinNano
Computation: 126.9 GFLOPS
Cost: 54725.0 CHF

Sensor: OS264, Algorithm: pointpillars
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRT
Computer: nvidiaJetsonOrinNX
Computation: 738.8 GFLOPS
Cost: 36375.0 CHF

Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

B

Planner: Astar
Computer: nvidiaJetsonOrinNano
Computation: 63.5 GFLOPS
Cost: 64825.0 CHF

Sensor: alphaprime, Algorithm: pointpillars

C

Fig. 27. Pareto front of price and computation across tasks, where more
scenarios demand more resources . Implementations plots for point A, B, and
C are visualized vertically. A and C indicate the least computation usage for
the most and least complex tasks, respectively, while B shows the minimum
price for the least complex task.

acceleration. This pattern suggests that while the RRT* planner
demands more resources, it stands out as the most efficient
option for optimizing average speed in the task. Our analysis
further confirms that to minimize computational requirements
in AV design, lidar sensors emerge as the preferred choice due
to their perception algorithms requiring fewer operations per
second. Conversely, to reduce mass or cost, camera sensors are

40000 60000 80000 100000 120000
Price (CHF)

20

30

40

50

60

70

80

90

100

Po
w

er
(W

)

B

A

30.0 km/h
50.0 km/h

Planner: RRT
Computer: nvidiaJetsonOrinNano
Power: 40.1 W
Cost: 65355.0 CHF

Sensor: alphaprime, Algorithm: pointpillars
Sensor: Ace13gmfl12, Algorithm: fcos3d

A

Planner: RRT
Computer: nvidiaJetsonOrinNano
Power: 23.0 W
Cost: 114125.0 CHF

Sensor: Ace7gm12fl, Algorithm: fcos3d
Sensor: hdl32, Algorithm: pointpillars

B

Fig. 28. Pareto front of price and power usage across task velocities, where
higher nominal velocities for the same set of scenarios require more resources.
Implementations for points A and B are visualized vertically. A and B indicate
lowest power usage for 50 km/h and 30 km/h nominal velocities, respectively.

40000 60000 80000 100000 120000
Price (CHF)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

M
as

s
(K

g)

C

B A

30.0 km/h
50.0 km/h

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Mass: 1.7 Kg
Cost: 109404.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: OS264, Algorithm: pointpillars

A

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Mass: 1.72 Kg
Cost: 40574.0 CHF

Sensor: Ace7gm12fl, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

B

Planner: RRT
Computer: nvidiaJetsonXavierNX
Mass: 1.466 Kg
Cost: 115139.0 CHF

Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: hdl32, Algorithm: pointpillars

C

Fig. 29. Pareto front of price and mass across task velocities, where higher
nominal velocities for the same set of scenarios require more resourses.
Implementations for points A, B and C are visualized vertically. A and C
indicate lowest mass for 50 km/h and 30 kmh nominal velocities, respectively.
B indicates lowest price for 30 km/h nominal speed.

preferred due to their lighter weight and lower price compared
to lidars. However, designs addressing the most complex task
always include lidar sensors. This underscores the superior
capability of lidar-equipped sensor pipelines due to their lower
FNR and FPR across a wider range of class configurations.

40000 60000 80000 100000 120000
Price (CHF)

0.5

1.0

1.5

2.0

2.5

3.0

M
as

s
(K

g)

B

A

Restricted prior
Full prior

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Mass: 1.7 Kg
Cost: 109404.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: OS264, Algorithm: pointpillars

A

Planner: Astar
Computer: nvidiaJetsonAGXOrin64
Mass: 0.78 Kg
Cost: 50694.0 CHF

Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d

B

Fig. 30. Pareto front of price and mass across priors, where priors with
more class configurations require more resources. Implementations for points
A and B are visualized vertically. A and B indicate the lowest mass for the
least and most restricted prior, respectively.

40000 60000 80000 100000 120000
Price (CHF)

0

200

400

600

800

1000

C
om

pu
ta

tio
n

(G
FL

O
PS

)

B

A

Restricted prior
Full prior

Planner: Astar
Computer: nvidiaJetsonOrinNano
Computation: 126.9 GFLOPS
Cost: 54725.0 CHF

Sensor: OS264, Algorithm: pointpillars
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRT
Computer: nvidiaJetsonAGXOrin64
Computation: 1073.5 GFLOPS
Cost: 40574.0 CHF

Sensor: Ace7gm12fl, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

B

Fig. 31. Pareto front of price and computation across priors, where priors
with more class configurations require more resources. Implementations for
points A and B are visualized vertically. A indicates the lowest computation
for both priors (same implementation) and B indicates lowest price for the
most restricted prior.

40000 60000 80000 100000 120000 140000 160000
Price (CHF)

20

30

40

50

60

70

80

90

100

110

Po
w

er
(W

)

B

A

minimum speed
14.0 km/h
24.0 km/h

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Power: 73.7 W
Cost: 105734.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRTstar
Computer: nvidiaJetsonOrinNano
Power: 36.8 W
Cost: 161825.0 CHF

Sensor: hdl32, Algorithm: pointpillars
Sensor: alphaprime, Algorithm: pointpillars

B

Fig. 32. Pareto front of price and power consumption across different average
speeds, where planners providing higher average speed across all scenarios
(30 km/h nominal speed) demand more resources. Implementations plots for
points A and B are visualized vertically. A and B indicate the lowest price
and lowest power for the highest average speed, respectively.

40000 60000 80000 100000 120000
Price (CHF)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

M
as

s
(K

g)

B

A

minimum speed
14.0 km/h
24.0 km/h

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Mass: 1.83 Kg
Cost: 105734.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Mass: 1.7 Kg
Cost: 109404.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

B

Fig. 33. Pareto front of price and mass across different average speeds,
where planners providing higher average speed across all scenarios (30 km/h
nominal speed) demand more resources. Implementations for points A and B
are visualized vertically. A and B indicate the lowest price and mass for the
highest average speed, respectively.

	Introduction
	Related Work
	System Modeling
	Modeling the robotic platform
	Modeling a task
	Modeling an agent
	Modeling perception performance and requirements

	Solving the robot co-design problem
	Modeling from task to perception requirements
	Sensor selection and placement problem

	Design of experiments and results
	Design of experiments
	Results

	Conclusion
	Appendix
	Appendix: Modeling a task
	Appendix: Background on a monotone theory of co-design
	Appendix: Modeling from task to perception requirements
	Appendix: Sensor selection and placement problem
	Appendix: Solving the Sensor Selection and Placement Set Cover Problem
	Appendix: Design of experiments
	Appendix: Results
	Appendix: Discussion

