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Abstract—Adversarial communication poses a significant
threat to cooperative autonomous driving, with subtle attacks
potentially resulting in catastrophic consequences. This paper
addresses the vulnerabilities of Multi-Agent Reinforcement
Learning (MARL) systems in autonomous driving to communi-
cation attacks and introduces TrustCommNet—a novel defence
framework. TrustCommNet secures MARL communication by
integrating a Theory of Mind predictor with a trust-based
validation mechanism, advancing beyond traditional detection
and prediction methods to actively mitigate adversarial threats.
Our rigorous evaluations demonstrate how communication
perturbations can severely compromise the performance and
safety of autonomous driving systems. TrustCommNet exhibits
a robust defence, achieving zero-shot resilience in most sce-
narios without prior exposure to the attack, and suffers 50%
less average disruption, quickly restoring cooperative perfor-
mance. Comprehensive experiments confirm that TrustComm-
Net scales effectively against numerous attackers, maintaining
near-perfect success rates in fast-paced urban environments.

I. INTRODUCTION

Adversarial communication poses a significant threat to
multi-agent systems, undermining their collaborative effi-
ciency and compromising security. This emerging challenge,
crucial in the context of cooperative autonomous driving,
necessitates a deeper understanding of how deceptive infor-
mation impacts multi-agent operations and the development
of effective countermeasures. Unlike traditional adversarial
attacks that primarily focus on manipulating a single ego
vehicle’s perception or decision-making process [36, 13, 23],
communication attacks exploit the interdependence of V2X
communication protocols [31].

Adversarial attacks on V2X communications are a rela-
tively new and under-researched field, primarily addressed
through imitation learning. Previous studies have shown that
even simple perturbations can lead to potent attacks, and
adversarial training is effective when the attack model is
known [31]. To defend against V2V attackers, methods have
been developed that involve sampling a subset of messages
and verifying consensus between object detections [14]. In a
recent study, a mechanism was developed to generate pertur-
bations in LiDAR-based V2X systems, and training on these
perturbed scenes significantly enhanced performance [34].
These methods involve pre-generating adversarial images or

Fig. 1: Conceptual overview of the proposed defence mech-
anism to maintain network integrity by detecting adversaries
and reconstructing their messages.

point clouds to then train using imitation learning, which
lacks adaptability. In contrast, framing the problem as a com-
municative Multi-Agent Reinforcement Learning (MARL)
problem allows for training adaptive attackers, leading to
the development of more robust defence mechanisms.

Recent advancements in the field of communication-based
MARL have demonstrated the immense benefits of these
methods, particularly in enhancing the coordination and
overall performance of multiple agents [37]. This burgeoning
area of research focuses on developing and implementing
strategies that range from broadcasting simple messages
[5, 29] to targeted communications for specific groups
[3, 20, 16]. Nonetheless, the increasing prevalence of adver-
sarial threats in MARL calls for new solutions that ensure
secure communication, striking a balance between efficient
collaboration and strong defences.

Despite the limited research on adversarial communication
in MARL, key studies have begun to shed light on the com-
plexity of defence mechanisms and adversarial strategies.
For instance, Blumenkamp et al. [1] observed that agents
can develop adversarial communication strategies driven by
competitive incentives rather than adversarial design. Xue et



al. [35] developed deliberative adversarial communication
methods, while Mitchell et al. [17] and Tu et al. [31] ex-
plored message detection methods and adversarial attacks on
feature maps, highlighting significant vulnerabilities. Despite
advancements in understanding adversarial communication
and detection, practical defence strategies are limited. Our
research aims to bridge this gap by introducing a modular
defence architecture that extends beyond traditional detec-
tion and prediction to mitigate adversarial threats.

This paper presents TrustCommNet, an end-to-end learn-
able architecture that enhances autonomous driving security
by ensuring communication integrity within autonomous ve-
hicle networks. TrustCommNet proactively defends against
adversarial threats through real-time checks and adaptive
responses. Its robustness comes from key components: a
system to validate communication integrity and filter ma-
licious content, a message scheduling system for effective
timing and targeting, and a message reconstruction process
to correct distorted messages.

To test our proposed defence mechanism, we craft an
adaptive attacker model based on Projected Gradient De-
scent (PGD) [10] to execute ℓ∞-bounded perturbations on
communication messages. We use this model to demonstrate
how perturbations in communication can significantly im-
pact team performance, which leads to poor success rates
for state-of-the-art algorithms [20, 28]. We then test the
resilience of our defence framework in three urban driving
scenarios: Highway, Intersection and Lane merging. The
results demonstrate our framework’s capability to detect and
counteract sophisticated attacks effectively, quickly recover-
ing from disruptions and restoring prior levels of cooperative
performance. Through various experiments, we show that
our framework achieves near-perfect zero-shot performance
in challenging environments and can scale to accommodate
multiple attackers.

II. RELATED WORK

A. Multi-Agent Reinforcement Learning with Communica-
tion.

Recent advancements in MARL emphasise the critical
role of efficient communication strategies among agents to
achieve cooperative objectives while minimising bandwidth
use. A comprehensive survey can be found in [37]. Early
works such as DIAL [5], RIAL [5] and CommNet [29]
introduced the concept of learning to communicate in MARL
with fully connected structures, ideal for environments re-
quiring collective decision-making. A few years later, ATOC
[8] and IC3Net [28] introduced gate mechanisms, enabling
selective communication based on agents’ local context,
enhancing efficiency in scenarios where continuous infor-
mation exchange is unnecessary. TarMAC [3] leverages an
attention mechanism for targeted communication, ensuring
relevance and efficiency in message exchange. SchedNet
[32] and GA-Comm [16] utilise communication graphs, with

SchedNet focusing on agent importance to manage band-
width and GA-Comm incorporating attention mechanisms
for refined communication processes. MAGIC [20], also
adopting a communication graph, adapts dynamically to
changing agent states and environmental conditions.

B. Adversarial Attacks on Deep Learning and Communica-
tion.

Adversarial attacks on deep learning models, initially
recognised in image classification [30, 7, 19], have since
extended into areas like multi-agent reinforcement learning
(MARL) [4, 9] and communication [31, 35, 1]. These attacks
are categorised into white-box [22], where attackers have full
knowledge of the network, and black-box [2, 31], executed
without detailed network information. Despite extensive
exploration, the specific targeting of multi-agent communi-
cation within MARL remains under-investigated.

Recent studies have made significant strides in under-
standing adversarial communication within MARL. Mitchell
et al. [17] introduced a method to evaluate message relia-
bility using a modified Graph Neural Network (GNN) layer
in attention-based MARL systems. Blumenkamp et al. [1]
discovered that agents naturally develop adversarial commu-
nication strategies in competitive-cooperative environments.
In contrast, Xue et al. [35] studied deliberate adversarial
communication and proposed a defence mechanism con-
ceptualising it as a two-player zero-sum game. The work
of Tu et al. [31] highlights vulnerabilities in distributed
deep learning, showing adversarial training’s effectiveness
when the threat model is known. Fung et al. [6] proposed a
decentralised trust mechanism for MARL, focused on binary
consensus tasks.

These studies highlight the complexity of adversarial
strategies in MARL and the need for robust defences.
The majority of the literature focuses on the generation or
detection of adversarial communication, with few works on
defence mechanisms. The most notable work is probably the
one by Xue et al. [35]. In contrast, our framework not only
detects adversarial messages but also validates, schedules,
and reconstructs communications to maintain integrity and
cooperative performance.

C. Adversarial Attacks on V2X communications.

Adversarial attacks on V2X communications represent a
relatively new field with limited research. Notable work
includes the study by Tu et al. [31], which investigated
adversarial transfer attacks on collaborative perception based
on LiDAR measurements. Their findings demonstrated that
even simple perturbations could result in potent attacks and
that adversarial training is an effective defence mechanism
when the attack model is known. Li et al. [14] proposed
an intelligent sampling method designed to aid CAVs in
achieving consensus in the presence of V2V attackers. This
method involves sampling a subset of messages at each
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Fig. 2: This schematic presents TrustCommNet, our proposed defence architecture for autonomous vehicle networks,
highlighting its key components: a Theory of Mind predictor for agent interactions, a message validation and reconstruction
mechanism, and a scheduler for efficient bandwidth use.

step and verifying consensus between two object detections.
Similarly, Xiang et al. [34] developed a mechanism capable
of generating perturbations in LiDAR-based V2X perception
systems and demonstrated that training on these perturbed
scenes can significantly enhance system performance. These
studies underscore the importance of developing robust
defences and innovative methods to mitigate the impact of
adversarial attacks on V2X communications.

D. Machine Theory of Mind.

The concept of Machine Theory of Mind (MToM) has
been explored in multi-agent systems, focusing on interpret-
ing behaviours and enhancing cooperation. Rabinowitz et al.
[24] introduced ToMNet, a meta-learning method to predict
agent behaviours based on local observations. Shu et al.
[26] proposed a hierarchical approach for a manager agent
to coordinate worker agents by inferring their preferences.
Shu et al. [27] presented AGENT, a benchmark to assess
machine agents’ understanding of intuitive psychology. Sclar
et al. [25] created an environment requiring agents to model
others’ mental states for high rewards. Wang et al. [33]
proposed ToM2C, a method to decide when and with whom
to communicate in multi-agent environments by predicting
others’ observations and goals.

Our approach uniquely predicts other agents’ commu-
nication states, unlike traditional methods focused on ob-
servations or goals. Using only positional data and agent
characteristics for message prediction, it addresses scenarios
where agents lack access to others’ observations or actions,
showcasing a novel ToM application in multi-agent analysis.

III. PROBLEM FORMULATION

A. Communication-Based MARL

We explore communication-based MARL as an exten-
sion of a Decentralised Partially Observable Markov De-
cision Process (Dec-POMDP) [21]. This framework is for-
mally represented by the tuple ⟨N,S,A,O, T , R, γ,M, C⟩.
Within this framework, N denotes a set of agents N =
{1, 2, . . . , n}, S represents the global state space, and A
encompasses the joint action space, with each agent i having
individual actions ai ∈ A and observations oi ∈ O. The
system’s dynamics are governed by a transition function
T : S×A → S, mapping the current state and joint actions
to the next state, and a reward function R : S×A×S → R,
which assigns a scalar reward to each state-action pair.

A key feature of communication-based MARL is
the incorporation the set of possible messages M =
{m1,m2, . . . ,mk}, and the communication protocol or ag-
gregation function C : MN → M, which consolidates
individual agents’ messages into a unified message. Each
agent has two policies, an action policy πi(ai|oi,mrec,i), and
a message policy ξi(mi|oi,mrec,i), where mrec,i is the mes-
sage received by agent i, consolidated by the communication
protocol. The goal of each agent is to maximise the expected
cumulative discounted reward, as defined by the objective
function maxπ1,π2,...,πN

E
[∑T

t=0 γ
trt(st, at1, a

t
2, . . . , a

t
N )

]
,

where γ is the discount factor and T the time horizon.

B. Adversarial MARL

Building on the Byzantine Generals Problem, which ex-
plores consensus difficulties in the presence of unreliable
agents [11], the Adversarial MARL approach addresses the



uncertainty regarding the number and strategies of adver-
sarial agents. We consider Nadv ⊆ N adversarial agents
equipped with the same observational capabilities as stan-
dard agents but are also capable of crafting malicious mes-
sages madv to mislead others, thereby disrupting decision-
making and compromising collective goals. Their behaviour
is guided by an adversarial message policy ξadv(madv|τ,m),
where τ is the history of observations and actions and m
is the unaltered message produced by the agent through the
message policy. Thus, the adversarial agents aim to introduce
carefully crafted message alterations to damage the overall
team performance.

IV. METHODOLOGY

In this section, we present out method for countering
adversarial attacks on communication in cooperative MARL.
Our framework includes an adversarial algorithm using ℓ∞-
bounded perturbations using PGD with the objective of
reducing the aggregated reward. For defence, we employ
TrustCommNet, a trust-based validation network to ensure
message integrity, supported by a ToM-like predictor. The
framework’s architecture is illustrated in Figure 2.

A. Dynamic ℓ∞-bounded Attack on Communication

Designing a strategic DRL attacker mainly involves ad-
dressing two challenges: determining ”how” and ”when”
to launch attacks. Our ”how-to-attack” strategy introduces
subtle message perturbations to create a disparity between
the network’s predicted and actual outputs, systematically
deviating agents’ policies from their optimal paths. Utilising
the differentiability inherent in the system, this method
efficiently computes necessary gradients without needing full
environmental knowledge.

We use PGD to optimise the adversarial message madv

and target the team loss within the MARL context. Em-
ploying PGD enables precise manipulation of the agent’s
messages to maximise the policy loss while operating within
the ℓ∞-bound, thus striking a crucial balance between the
efficacy of the attack and undetectability. The PGD update
for the adversarial message is articulated as follows:

m(t+1) = Projm+ϵ

(
mt + α · sgn

(
∇mtL(θ,mt, ht)

))
(1)

where m(t+1) is the updated adversarial message, with
sgn denoting the sign function, and ht as the current
hidden state. The step size is given by α, and Projm+ϵ

maintains the message within the allowable perturbation
bounds, ϵ. We utilise a cross-entropy loss function that
maximises the probability of the worst possible actions. This
approach guides adversarial agents to craft messages madv

that effectively degrade the performance of non-adversarial
agents by increasing the likelihood of sub-optimal decisions.

We now shift focus to the ”when-to-attack” problem,
which introduces an additional layer of complexity to the

task of identifying potential attackers within a system. Our
methodology for timing attacks hinges on a specifically
designed preference function for the attacker. We adopt
a policy output disparity function, similar to [15]. This
function evaluates the disparity between the maximum and
minimum outputs of an agent’s policy at a given step:

c = maxπi(o
t
i,m

t
rec,i)−minπi(o

t
i,m

t
rec,i) (2)

The rationale behind employing this function is to evaluate
the decisiveness of a DRL agent towards a particular action;
a larger difference indicates a strong preference for a specific
action, justifying an attack. Conversely, a minimal difference
suggests an absence of clear preference, advising against an
attack on this time step. To operationalise this strategy, we
introduce a threshold β, serving as the critical value for c(oti)
above which an attack is deemed worthwhile.

We acknowledge there are more complex attacking strate-
gies in the literature, like state luring mechanisms [15, 18];
however, our focus in this paper is on the defence mech-
anism. Thus, we just want to create a simple yet effective
attack on multi-agent communication.

B. Trust Verification Defence Mechanism

Building on the concept of Machine Theory of Mind
(ToM) [24], our model enables agents to predict the com-
munication messages of others. While similar to the ToM2C
approach [33], which infers goals and observations from
pose and encoded observation, our method predicts encoded
communication messages of other agents based solely on
their pose ϕj .

First, as illustrated in figure 2, the imagined message for
an external agent j from the point of view of an agent i
is fToM,j,i(m

t
j,i,ToM |ϕt

j , h
t
j,i,ToM ). This model considers as

input agent’s j pose ϕt
j , and a hidden state ht

j,i,ToM that
represents the history of past behaviour. From this point
onwards, we drop the index of agent i for simplicity. It
should be noted that figure 2 only displays the modelling
network of agent j from the perspective of agent i, fToM,j,i.
However, each agent has an independent network to model
the communications of others. Since all agents’ communi-
cation messages have the same form, they can share the
weights of the network fToM,j . In practice, we use an LSTM
followed by a fully connected layer to represent fToM,j .

Predicted message
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Message Reconstruction

Dynamic communication
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Fig. 3: Trust-based mechanism for detecting, reconstructing
and scheduling messages in the communication network.



Second, we introduce and train a network layer, which
we name TrustNet, designed to assess the reliability of each
agent’s communication. TrustNet operates by comparing the
predicted communication message with the actual message
sent by each agent. Specifically, for each agent j at time
t, TrustNet evaluates fTrust(η

t
j |mt

j ,m
t
j,ToM ), where ηtj acts

as a probabilistic trust indicator. This indicator approximates
the agent’s reliability by quantifying the discrepancy be-
tween its expected message mt

j,ToM and the actual com-
munication message mt

j . We assume the homogeneity of all
agents’ observations and messages. Thus, we assign the same
network parameters for fToM and fTrust across agents.

To safeguard the integrity of multi-agent communications,
our framework implements a dynamic trust-based protocol.
In instances where an agent’s trust score descends below a
trust threshold ηtj < ηtrust, the system activates protective
protocols and the agent’s communication message will then
be blocked and a new message can be reconstructed based
on the predicted message mt

j,ToM and agent’s i current
observation oi:

mt
j,new =

{
fRec(m

t
j,ToM, oi) if ηtj < ηtrust

mt
j otherwise,

(3)

Following message reconstruction, a communication
scheduler processes the updated messages from all agents,
generating an adjacency matrix Gt that defines the com-
munication scheme using a hard attention mechanism. To
maintain differentiability during training, a Gumbel-Softmax
layer was employed. The matrix Gt indicates active com-
munication with Gt

ij = 1 for agent i to agent j at time t
and Gt

ij = 0 otherwise. A simplified schematic overview
of the trust-based message detection, reconstruction, and
scheduling process is shown in figure 3.

Agents then receive incoming aggregated messages mt
rec,i

and integrate them with their own encoded observation using
a Graph Attention Network (GAT). This is then utilised to
predict actor and critic outputs as depicted in figure 2. This
structured approach allows agents to dynamically refine their
communication strategies, enhancing message efficiency and
the robustness of the network against potential threats.

C. Overall Training Objective

To enable agents to develop accurate predictions of other
agents’ communications, we use the Kullback-Leibler (KL)
divergence between the predicted and actual communication
probability:

LToM =
1

N

N∑
j=1

N−1∑
i ̸=j

DKL(p(m
t
j)||q(mt

j,ToM |ϕt
j , h

t
j,ToM ))

(4)
where N is the number of agents, p(mt

j) is the actual
communication probability distribution for the j-th message
sample, and q(mt

j,ToM |ϕt
j , h

t
j,ToM ) is the corresponding

predicted distribution by the ToM layer. The KL divergence-
based loss is crucial for accurately measuring differences
between the model’s predicted probabilities and actual com-
munication behaviours, ensuring effective learning of com-
munication dynamics in the multi-agent environment.

Additionally, the training process employs an Actor-Critic
loss (LAC) to optimise the agents’ policies towards max-
imising expected discounted rewards. This loss integrates
a policy gradient component, optimising the agents’ policy
networks, and a value component, refining the value function
estimates:

LAC =E(τ,madv)

[
T∑

t=0

At · ∇θ log πi(a
t
i|oti,mt

i)

]

+ λ

T∑
t=0

∇ρ(R
t
i − Vρ(o

t
i))

2

(5)

where At = (Rt
i − Vρ(o

t
i)) is the advantage function

and Vρ is the value function with set of parameters ρ. In
practice, we let the policy and the value function share
the same parameters of the neural network except for their
respective output layers (heads). The parameter λ balances
the two components, facilitating effective policy learning and
decision-making. Therefore, the overall training loss of the
model is Ltot = LToM + LAC .

We use the Centralised Training Decentralised Execution
(CTDE) paradigm. During training, agents utilise observa-
tions and communication from others, but during inference,
they rely on local observations and the scheduler-determined
adjacency matrix Gt. This framework assumes agents know
each other’s locations to predict communication patterns
without accessing others’ observations or messages.

V. EXPERIMENTS

A. Environment Description

We use a modified version of Highway-env [12], adapted
for multi-agent urban navigation where agents avoid col-
lisions and reach their destination to maximise rewards.
Our approach introduces randomness in vehicles’ speeds,
locations, and destinations to enhance adaptability and limits
agent communication to 60 meters to maintain realism,
aligning with DSRC protocols.

The elements of the gym environment can be summarised
as follows:

• Agents: CAVs with limited visibility, capable of ex-
changing messages through a vehicle-to-vehicle com-
munication network.

• Observation: A bespoke LiDAR-like method using ray-
casting to segment the 360° field around the agent,
detecting other vehicles within an 80-meter range.

• Action: Discrete meta-actions including acceleration
(minor and major), deceleration (minor and major),
speed maintenance, and lane changes (left and right).



(a) Highway.

(b) Intersection.

(c) Lane merging.

Fig. 4: Scenarios used for the experiments.

• Reward: A cooperative game where rewards are based
on speed, collision avoidance, arrival, and bonuses for
cooperative lane merging.

B. Result Comparison

In this section, we present the experimental results from
testing the adversarial defence capabilities of various state-
of-the-art communicative MARL algorithms, including our
proposed TrustCommNet. The baseline algorithms evaluated
are MAGIC [20] and IC3Net [28], applied to our modified
version of highway-env.

Our primary evaluation metric is the average success rate
(%), or win rate, across all environments and scenarios,
indicating the proportion of episodes successfully completed.
Additionally, we assess performance using the average team
return. To ensure the robustness of training results, we
employ 5 independent seeds to generate learning curves,
and we validate our experiments across 100 independent test
episodes.

The procedure for adversarial training of the baselines and
TrustCommNet is described as follows. Initially, all models
were pretrained to achieve clear convergence, attaining an
average test success rate of over 99%. After this pretraining,
the models were exposed to the attacker for the first time.
Subsequently, all models were retrained to assess their
inherent resilience and ability to counteract the disruptive
effects of the malicious messages. During this phase of the

experiment, adversarial messages were incorporated at the
4000 timestep mark.

Figure 5 presents the result comparison of performing
adversarial training for 2 × 105 timesteps. Moreover, the
zero-shot performance over 100 test episodes of the different
algorithms is presented in table I. Our method requires min-
imal training and, in some cases (intersection and highway),
demonstrates zero-shot safety against adversarial threats
without previous exposure to the communication attack. In
contrast, both MAGIC and IC3Net are severely affected
by adversarial communication, displaying high levels of
disruption (low success rate) and long recovery tails. IC3Net
is not able to recover in two out of three scenarios in
2×105, while MAGIC is able to recover performance in all
three scenarios but takes several timesteps to reach previous
performance levels.

Figure 6 shows TrustCommNet in action in the Inter-
section scenario with a single adversarial agent (agent 0).
The figure shows the communication graph and normalised
average trust probability for each agent (heatmap). Initially,
all agents share messages to locate the prey (frames (a)
and (b)). As the episode progresses, agent 0’s malicious
behaviour is detected, leading to an increase in its average
trust score (heatmap) and subsequent blocking by other
agents (frames (c) and (d)). By reconstructing the original
message, agents can navigate the intersection safely.

TABLE I: Zero-shot performance of different algorithms
when exposed to communication attacks.

Method Highway Intersection Lane-Merging
IC3Net 75.5± 8.5 34.0± 12.45 32.5± 9.5
MAGIC 90.83± 6.4 52.04± 25.3 84.0± 12.8
TrustCommNet 99.3± 1.2 99.0± 1.3 97.6± 2.1

C. Scaling to Multiple Attackers

We evaluated the performance of our proposed defence
mechanism against varying numbers of attackers in an
Intersection environment with 8 agents, using the zero-shot
success rate (%) as the metric. The results, presented in
Table II, show the rapid performance decline of the IC3Net
benchmark as the number of attackers increases, while
MAGIC exhibits stable but poor performance. In contrast,
TrustCommNet maintains robust performance across all at-
tacker counts, demonstrating its potential to scale effectively
in larger networks with multiple attackers. These findings are
also depicted graphically in Figure II.

VI. CONCLUSION

This study presents TrustCommNet, a novel framework
developed to enhance the robustness of autonomous driv-
ing systems against adversarial communication. We model
the adversarial communication problem as a Multi-Agent
Reinforcement Learning problem and devise a defence
mechanism that is able to counteract the attacks. Our
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Fig. 5: Performance comparison of adversarial training between TrustCommNet and baseline models. Adversarial
communication and training commenced at the 4000-step mark, indicated by the dashed line.
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Fig. 6: Sequence of an episode of the Intersection scenario featuring a single attacker agent (agent 0). The figures illustrate
part of the defence strategy, which involves blocking the communication of the corrupted agent.
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TABLE II: Scalability of zero-shot algorithm defence across
different numbers of attackers.

N° Attackers MAGIC IC3Net TrustCommNet
1 41.3± 6.6 25.6± 12.45 99.2± 1.4
2 44.5± 24.7 26.0± 6.7 99.0± 1.3
3 41.7± 20.9 19.6± 5.5 99.0± 1.3
4 44.1± 26.7 16.2± 4.2 98.8± 1.3
5 45.1± 28.29 3.8± 3.3 99.3± 1.2

comprehensive evaluation against ℓ∞-bounded adversarial
attack demonstrates how message alterations can signifi-
cantly diminish team performance in state-of-the-art MARL
algorithms. Although baseline frameworks provide certain
defences by adversarial training, this process often disrupts
network cooperation, leading to lower success rates. In

contrast, TrustCommNet shows near-perfect zero-shot per-
formance in all driving scenarios, surpassing retraining con-
ventional communication MARL algorithms. Future efforts
should concentrate on scaling up and refining communica-
tion protocols to reinforce security in complex, agent-dense
environments, and will also assess different types of attacks.
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