
Sparse Gaussian Process-Based Strategies for
Two-Layer Model Predictive Control in

Autonomous Vehicle Drifting
Cheng Hu∗, Yangyang Xie∗, Lei Xie ∗, Haokun Xiong∗, Hongye Su∗, and Michele Magno†

∗ State Key Laboratory of Industrial Control Technology
Zhejiang University, Hangzhou, China

†Center for Project-Based Learning, D-ITET, ETH Zurich, Switzerland
Email: {22032081, 22332009}@zju.edu.cn, leix @iipc.zju.edu.cn

haokunxiong @zju.edu.cn, hysu @iipc.zju.edu.cn
michele.magno @pbl.ee.ethz.ch

Abstract—Vehicle safety is paramount in autonomous driv-
ing, particularly when managing vehicles at extreme side-slip
angles—a challenge often overlooked by conventional controllers.
Recent studies have focused on vehicle drift control under such
extreme conditions. However, tracking complex trajectories while
drifting is still challenging, especially when a model mismatch
exists. This paper proposes a novel two-layer model predictive
controller based on sparse variational Gaussian processes. The
first layer is responsible for computing the optimal drift equi-
librium points, while the second layer is tasked with tracking
these points. A variational free energy-based Gaussian process is
utilized to compensate for errors in the upper-layer drift equilib-
rium point calculations as well as mismatches in the lower-layer
controller model. To enhance prediction accuracy, vehicle error
models are established separately for the transit drift and deep
drift phases. The effectiveness of the controller is demonstrated
through joint simulations on MATLAB and CarSim platforms.
The proposed two-layer model predictive controller is compared
with three state-of-the-art drift controllers, demonstrating at
least a 43% reduction in average lateral error when tracking
trajectories with varying curvature. In the scenario with a 2%
friction coefficient mismatch, the experimental results show that
the proposed controller, with model error learning, reduces the
average lateral error by 72% under model mismatch conditions,
which is even 13% lower than the lateral error without model
mismatch. Additionally, it shows twice the tracking performance
of fully independent training conditional-based model predictive
controllers and is ten times faster in computation time compared
to fully Gaussian process-based model predictive controllers.

I. INTRODUCTION

Autonomous driving has garnered increasing popularity in
recent years [1]. These systems aim to replace human drivers
and enhance road safety. However, they encounter significant
challenges in extreme driving conditions, such as very slippery
surfaces, where traditional control systems may struggle due
to tire skidding and model mismatches [2]. The behavior
of vehicles during high sideslip situations, such as drifting,
significantly differs from normal driving. Drifting involves
vehicles achieving a turning equilibrium through controlled
oversteer, with the front wheels turning opposite to the di-
rection of normal steering [3]. The pursuit of reaching the
limit for autonomous driving has urged a growing research

SVMPC（ Model
Mismatch Ours）

TMPC
（No Mismatch）

TMPC（Model
Mismatch）

Figure 1: Autonomous drift in CarSim: red vehicle (TMPC
without model mismatch), blue vehicle (TMPC with model
mismatch, showing significant lateral error), yellow vehicle
(SVMPC after model error learning, with superior tracking
performance).

interest. Drifting represents another turning equilibrium [4, 5].
One critical distinction is that the drift equilibrium point is
a saddle point, making it more susceptible to destabilization
and exiting the steady state. Velenis et al. [6] proposed a
method for calculating drift equilibrium points by specifying
a fixed curvature and a desired sideslip angle, enabling the
determination of these points through the vehicle dynamics
equations. Subsequent work has primarily focused on how
vehicles can track equilibrium points to maintain steady-state
drifting [7, 8]. Tracking trajectories while a vehicle drifts poses
a more challenging task due to the conflicting objectives of
drifting and trajectory tracking [9]. The design philosophy
behind both nonlinear controllers [9–11] and the Linear
Quadratic Regulator (LQR) controller [12] is to transform
the task of trajectory tracking into tracking drift equilibrium
points. Nevertheless, they do not adequately consider con-
straints. Model Predictive Controller (MPC) can account for
constraints, but its performance depends on the accuracy of
the model. When the vehicle is in a drifting state, model
mismatches occur, significantly diminishing its ability to track
trajectories. The integration of Gaussian Process (GP) and

Model Predictive Controllers holds considerable potential in
addressing these challenges [13, 14]. However, as the data size
increases, the Gaussian model must be sparsely processed to
ensure the controller’s real-time performance.

This paper addresses the issue of simultaneously tracking
trajectories and drifting while accounting for mismatches in
the vehicle model. We propose a two-layer model predictive
controller based on sparse Gaussian strategies with the follow-
ing contributions:

• A Two-Layer Model Predictive Controller (TMPC) has
been proposed to address the issue of tracking trajectories
while drifting. The upper layer determines the optimal
curvature by considering the lateral deviation from the
trajectory to calculate the equilibrium points for drifting.
The lower layer linearizes the model at the equilibrium
points and employs a linear MPC to track the steady-state
values.

• The sparse variational Gaussian process is introduced for
the first time in the drifting domain to solve the problem
of model mismatch. Initially, based on whether the rear
tire forces are saturated and the steering angle exceeds
the critical value, it is divided into two local sparse
variational Gaussian processes, enhancing the accuracy of
predictions. Subsequently, the sparse model compensates
for both the model inaccuracies in calculating equilibrium
points by the upper layer and the model errors of the
lower-layer controller.

• TMPC shows at least a 43% improvement in tracking
performance compared to three state-of-the-art drift con-
trollers when tracking trajectories with varying curvature.
Additionally, we demonstrate that our controller outper-
forms the well-known sparsed Fully Independent Training
Conditional-based MPC (FCMPC) and Full GP based
MPC (FGMPC) regarding tracking performance, model
error learning, and computation time.

II. RELATED WORK

A. Classical drift controllers

Some works have addressed the issues of tracking trajecto-
ries while drifting. Park et al. [12] proposed a separate lateral
and longitudinal control framework. Lateral control is used
to track the trajectory by adjusting the steering angle, while
longitudinal control ensures the vehicle’s state is stabilized
towards the drift equilibrium point. If the lateral error is too
large, the separate control will fail to maintain the vehicle in
a drifting state. Goh et al. [9] formulated an error dynamics
model to derive the desired state derivatives, subsequently
translating them into control inputs utilizing a nonlinear mod-
eling strategy. This controller successfully tracks trajectories
with varying curvature during drifting and has been validated
on actual vehicles. Similarly, an MPC approach for trajectory
tracking proposed by Chen et al. [15] aims to enhance the input
modeling of error dynamics. Nevertheless, a notable limitation
of such methods is the neglect of constraints, potentially
leading to the derivatives of desired states exceeding the limits

imposed by the nonlinear mapping. Some MPC controllers
[16–19] that simultaneously optimize steady-state drifting and
trajectory tracking have addressed the issue of constraint
neglect. Despite this progress, the conflicting objectives make
adjusting the weights particularly challenging. To tackle these
issues, We propose a two-layer MPC controller to decouple
the control issues. The upper layer focuses solely on trajectory
tracking, while the lower layer deals exclusively with steady-
state drifting. However, model mismatches occurring during
the drifting process result in inaccurate calculations of the
drift equilibrium points and compromised low-level control,
thereby limiting the tracking performance of the controller.

B. Learning based drift controllers

There are also methods employed by machine learning
techniques to address model mismatches in drift control sys-
tems. Model-free reinforcement learning approaches [20, 21]
have been utilized to learn drift control policies, while neural
networks [22, 23] have been employed to approximate vehicle
models. Nevertheless, these methods do not fully leverage
existing mechanistic models, leading to extended training
periods to ensure control performance convergence. Djeumou
et al. [24] proposed a data-driven tire model to enhance the
accuracy of mechanistic models. However, mechanistic models
often involve approximations to meet real-time requirements
and manage model complexity, resulting in discrepancies with
actual vehicle dynamics. In the context of autonomous racing,
Hewing et al. [13, 14] proposed a model predictive control
approach based on Gaussian Processes. They leveraged a
sparse Gaussian Process based on Fully Independent Training
Con- ditional (FITC) to fit the model error and implemented
an information gain-based selection method to maintain the
dataset at 300 data points. This approach enhanced model ac-
curacy while meeting the controller’s real-time requirements.
Similar to their approach, we also used Gaussian Processes
to fit the model error in the proposed drift controller, but
with a sparse Gaussian Process based on Variational Free
Energy (VFE), which provides better uncertainty estimation
and prediction accuracy than FITC [25, 26]. Additionally, to
address the problem of fitting the drift data, we constructed
two sparse Gaussian Processes based on tire saturation and
steering angle value to improve the accuracy of the model error
prediction. Moreover, the constructed sparse Gaussian Pro-
cesses compensate for the error in calculating the equilibrium
point, thereby improving the trajectory tracking performance
of the controller.

III. PRELIMINARY

A. Gaussian Process Regression

In general, a GP is used to identify an unknown function
f(z) : Rnz → R with the following noise model:

y = f(z) + ω (1)

where z ∈ Rnz is the input, y ∈ R is the output,
and ω ∼ N (0,Σω) is noise term. Consider a training
dataset D={zi, yi|i = 1, 2, ..N} arising from the unknown

function (1), Z = [z1, z2, ..., zN]T ∈ RN×nz and Y =
[y1, y2, ..., yN]T ∈ RN are defined. The Prior distribution over
the function can be expressed as:

f(z) ∼ N (m(z),KZZ) (2)

where m(z) is the zero mean function. KZZ represents the
gram matrix, i.e. [KZZ]ij = k(zi, zj). k(zi, zj) is the covari-
ance function. The joint probability distribution of Y and f(z∗)
at the test point z∗ can be formulated as:[

Y
f(z∗)

]
∼ N (0,

[
KZZ + IΣω KZz∗

Kz∗Z Kz∗z∗

]
) (3)

Then, the Bayesian formula is used to derive the posterior
probability of the output at the test point, which includes both
the mean and variance of the prediction.

µs(z∗) = Kz∗Z(KZZ + IΣω)−1Y (4)

Σs(z∗) = Kz∗z∗ −Kz∗Z(KZZ + IΣω)−1KZz∗ (5)

In our work, the squared exponential covariance function
k(z, z′) = σ2exp(−1

2 (z − z′)⊤Λ−1(z − z′)) is applied to
define the GP, with hyperparameters σ2, Σω , and Λ−1 =
diag(λ−1

1 , λ−1
2 , ..., λ−1

nz
). For multidimensional outputs, each

dimension is assumed to be independent. The GP approxima-
tion of the unknown function with multidimensional outputs
can be denoted by

d(z) ∼ N (µ(z∗),Σ(z∗)) (6)

with µ = [µs
1, . . . , µ

s
nd
]⊤ and Σ = diag([Σs

1, . . . ,Σ
s
nd
]). nd is

the dimension of the output.

B. Sparse Gaussian Process

The disadvantage of combining Gaussian processes with
controllers is that the computational complexity for calculating
the mean and variance increases as data accumulates. For-
tunately, many studies focus on the sparse approximation of
Gaussian processes. Our work concentrates on approximating
the posterior distribution using M inducing points (M ≤ N).
The main principle is to approximate the low-dimensional
representation of kernel matrix KZZ through global distil-
lation [27]. The computational complexities for the mean
and variance of a full GP are O(ndnzN) and O(ndnzN

2),
respectively. However, with sparse approximation, the com-
plexities for computing the mean and variance are reduced to
O(ndnzM) and O(ndnzM

2) [28].
In the context of extreme driving conditions, a FITC based

Gaussian process is integrated into the MPC [13]. This sparse
method imposes the full independence assumption to remove
the dependency among training data such that given p(f|fz)

:

N∏
i=1

p(fi|fz) = N (KZZm
K−1

ZmZm
fz, diag (KZZ −QZZ)) (7)

where f represents the function values of the training data.
fz is the latent function of the inducing point with the input
of Zm similar to f. QZZ is a Nyström notation Qab =
KaZmK−1

ZmZm
KZmb. The utilization of the diagonal terms

� � �
Figure 2: Single-track vehicle model.

in FITC for variance approximation leads to underestimat-
ing the predictive variance. Therefore, we employ the VFE-
based Gaussian process into the controller, which offers better
predictive performance[25, 27]. The VFE method will be
introduced in Section V.

IV. VEHICLE MODEL AND ANALYSIS

A. Drift Dynamics

Table I: Vehicle and Controller Parameters

Parameters Value Parameters Value

m 1830 kg N 40
Iz 3234 kg·m2 qx, qy 10, 10
a 1.40 m Λu diag(20, 20)
b 1.65 m Uu [15, 55]× [0, 10]
µ 1 Q diag(1, 1, 1)

Bf/r 8.32 Λl diag(1, 0.001)
Cf/r 1.63 U l [−0.4, 0.4]× [−7e3, 7e3]
T 0.1 s xl [20, 1.5, 1.5]⊤

ϵ 0.05

The single-track vehicle model depicted in Fig. 2 is widely
used in drift controllers due to its appropriate level of com-
plexity and accuracy [2]. The model incorporates the states of
velocity V , sideslip angle β, and yaw rate r. The vehicle is
assumed to be rear-wheel drive, with the inputs to the model
being the steering angle δ and the longitudinal force of the
rear tire Fxr. The equations are as follows:

V̇ =
−Fyf sin(δ − β) + Fyrsin(β) + Fxrcos(β)

m
(8)

β̇ =
Fyfcos(δ − β) + Fyrcos(β)− Fxrsin(β)

mV
− r (9)

ṙ =
aFyfcos(δ)− bFyr

Iz
(10)

where m is the vehicle’s mass and Iz represents the moment of
inertia in the vertical direction. The distances from the center
of gravity (CoG) to the front and rear tires are indicated by a
and b, respectively. Additionally, the lateral forces on the front
and rear tires are denoted as Fyf and Fyr.

The lateral forces are modeled using the simplified Pacejka
Formula [29]:

Fyi =

{
−µFzisin(Carctan(Bαi)) if |αi| < αsl

−µFzisgn(αi) if |αi| ≥ αsl

(11)

with

αsl = tan (arcsin(1)/C) /B (12)

where µ is the coefficient of friction, Fzi is the normal load
on the tire (i ∈ (f, r)). B and C are parameters that that
necessitate identification. αsl signifies the critical value of tire
slip angle. The slip angle αi for the front and rear tires can
be expressed as follows:

αf = arctan(
V sin(β) + ar

V cos(β)
)− δ (13)

αr = arctan(
V sin(β)− br

V cos(β)
) (14)

B. Drift Steady Analysis

Drifting is another manifestation of turning equilibrium [3].
Given the vehicle’s velocity and steering angle, the equilib-
rium points can be determined by setting the derivatives of
Eqs. (8) to (10) to zero. In this study, the velocity is set to
50 km/h, while the steering angle varies between -15◦ and 15◦.
Multiple equilibrium points are then obtained, as illustrated in
Fig. 3.

The black markers represent normal turning equilibrium
points characterized by a small sideslip angle, while the yellow
markers correspond to equilibrium points for drifting with a
large sideslip angle and nearly saturated front tire forces. This
makes it very challenging to simultaneously control the front
wheel to follow the trajectory while maintaining the drift. The
figure also demonstrates that when the steering angle δ remains
within ±7◦, the vehicle can transition between normal turning
and drifting. Beyond this threshold, exceeding −7◦ initiates
a deep drift state (left-handed drift). Therefore, this angle is
identified as the critical point for deep drifting, denoted as
δsl = −7◦.

- 1 5 - 1 0 - 5 0 5 1 0 1 5- 0 . 6
- 0 . 3
0 . 0
0 . 3
0 . 6

 D r i f t e q u i l i b r i u m
 N o r m a l c o r n e r i n g e q u i l i b r i u m

β(
rad

)

δ(d e g)
(a) Sideslip angle vs. steering

angle.

- 1 5 - 1 0 - 5 0 5 1 0 1 5- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0

 D r i f t e q u i l i b r i u m
 N o r m a l c o r n e r i n g e q u i l i b r i u mr(ra
d/s

)

δ(d e g)
(b) Yaw rate vs. steering angle.

- 1 5 - 1 0 - 5 0 5 1 0 1 5
- 1 0 0 0 0
- 5 0 0 0

0
5 0 0 0

1 0 0 0 0

 D r i f t e q u i l i b r i u m
 N o r m a l c o r n e r i n g e q u i l i b r i u m
 M a x i m u m F y f

Fy
f(N

)

δ(d e g)
(c) Front lateral tire force vs.

steering angle.

- 1 5 - 1 0 - 5 0 5 1 0 1 50
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0

 D r i f t e q u i l i b r i u m
 N o r m m a l c o r n e r i n g e q u i l i b r i u m
 M a x i m u m F r

Fr(
N)

δ(d e g)
(d) Magnitude of total rear tire

force Fr vs. steering angle.

Figure 3: Equilibrium points of drifting and normal turning.

Tracking MPC

Equilibrium Point
Calculation

Learning based
MPC

Deep Sparse
gaussian process

Transition Sparse
gaussian process

Drift State Analysis

ref

*R

* *, xrF

, , , ,eq eq eq eq eq
xrV r F  VFEd

1
Vd

2
Vd

, ,V r

, ,X Y 

, , , , x rV r F 

, r 

Figure 4: Two-layer model predictive controller structure: the
upper layer calculates the drift equilibrium point for trajectory
tracking, while the lower layer tracks the setpoint to maintain
drift. Based on whether the vehicle has entered a deep drift
state, different local Gaussians are selected for error compen-
sations.

Furthermore, Fig. 3d reveals that the vehicle’s rear wheels
in the drift steady state satisfy the following dynamic equation:√

F 2
xr + F 2

yr = µFzr (15)

References [9, 16] also demonstrate that when a vehicle is
drifting, and the rear tire slip angle exceeds the critical value
at the first time, the resultant force on the rear tire Fr must
satisfy Eq. (15). Consequently, the critical rear tire slip angle
and steering angle serve as indicators to ascertain whether the
vehicle has transitioned into a deep drift state. In subsequent
controller design, distinct sparse Gaussian models can be
established based on the vehicle’s drift status.

V. METHODOLOGY

In this section, we will introduce the proposed method
called Sparse Variational Gaussian Processes with Two-Layer
Model Predictive Control (SVMPC). The controller block
diagram is shown in Fig. 4.

A. Variational Free Energy Gaussian process
The well-known posterior approximation of the Gaussian

process is the VFE method [26], which is introduced in
Appendix VIII-A.

The VFE based sparse GP is used to learn the error
dynamics of the vehicle model[14]. Based on the previous
analysis of drift states, it is observed that the data distribution
differs before and after entering the deep drift. In order to
enhance the precision of predictions, two local Gaussians can
be constructed by assessing the saturation of tire force and
reverse degree of steering angle:

dVFE =

{
d1V if |αr| ≥ αsl and δ ≤ δsl

d2V else
(16)

The first GP d1V is for the deep drift state, and the second d2V
is for the transition state.

B. Trajectory Tracking layer

In our previous work [18], the vehicle’s future trajectory was
considered to be an arc with a fixed drifting radius, which
was very effective when tracking circular paths. However,
when extended to complex trajectories, this assumption does
not hold true, and the future path should instead be an arc
with varying curvature. Therefore, we developed a discrete
model for predicting varying curvature trajectories, using the
longitudinal position X , lateral position Y , and heading angle
Ψ as the model states xu, and the radius R and arc length L
as control inputs uu. The model is expressed as follows:

Xi+1 = Xi +Ri (sin(Ψi+1)− sin(Ψi)) (17)
Yi+1 = Yi +Ri (cos(Ψi+1)− cos(Ψi)) (18)

Ψi+1 = Ψi +
Ri

Li
(19)

Then, the formulation of the optimal curvature controller using
the model is

min
uu

N−1∑
i=1

qx(Xk+i −Xref)
2 + qy(Yk+i − Yref)

2

+ ∥uu
k+i − uu

k+i−1∥2Λu + qx(Xk+N −Xref)
2

+ qy(Yk+N − Yref)
2 (20)

s.t. xu
k = xu

0 (21)
Eqs. (17) to (19) (22)
uu
k+i ∈ Uu (23)

∀i = 0, 1, · · · , N − 1

where xu =
[
X Y Ψ

]⊤
and uu =

[
R L

]
. The param-

eters qx, qy , and Λu are weights, and N is the prediction
horizon.

Only the first stage of the input from the MPC solution is
used to calculate the optimal drift equilibrium point:

u∗
k|k =

[
R∗ L∗]⊤ (24)

The state of the drift model defined in Section IV-A is xl =[
V β r

]⊤
, and the control input is ul =

[
δ Fxr

]⊤
. The

drift dynamics can be denoted as

ẋl = fv(x
l, ul) (25)

Drift equilibrium is a form of steady-state turning, which
also satisfies the formula for calculating the steady-state radius
[6] R = V

r . Thus, the velocity can be expressed in terms of the
yaw rate and the optimal radius R∗. By fixing the reference
sideslip angle βref, the equilibrium point can be determined
by solving fv(x

l, ul) = 0. To address the issue of inaccurate
equilibrium point calculation due to model mismatch, the
sparse Gaussian model dV FE is used to fit the model error,
and the following compensation is applied when calculating
the equilibrium point:

0 = fv(x
l, ul) + dVFE(x

l, ul)/T (26)

where T is the control period. The vectors xeq =[
V eq βeq req

]⊤
and ueq =

[
δeq F eq

xr

]⊤
represent the

optimal equilibrium point of the drift dynamics.

Remark. Consider the true dynamics of the nonlinear system

ẋl = fv,true(x
l, ul) = fv(x

l, ul) + ε (27)

where ε is the model error of continuous time system. Let
(xl

eq, u
l
eq) be the equilibrium point for which 0 = fv(x

l
eq, u

l
eq)+

ε. The forward Euler’s discrete appproximation of Eq. (27) is

xl
k+1 =xl

k + T [fv(x
l
k, u

l
k) + ε]

=fd(x
l
k, u

l
k) + Tε

Thus we have ε ≈ dVFE/T .

C. Learning-based Control Layer

By linearizing the drift model at the optimal equilibrium
point and discretizing it using the forward Euler method, we
derive the following nominal model:

xl
k+1 = Axl

k +Bul
k + dl (28)

dl = xeq −Axeq −Bueq (29)

which is defined as

xl
k+1 = fd(x

l
k, u

l
k) (30)

Due to its simplifications, the single-track model cannot fully
capture the vehicle’s drifting dynamics. The spare Gaussian
process is employed to learn the model error dynamics.

xl
k+1 = fd(x

l
k, u

l
k) + dVFE(x

l
k, u

l
k) (31)

At each time step, the predicted state, owing to the Gaussian
error term, becomes a stochastic distribution after linear su-
perposition. Therefore, the state constraints can be expressed
as chance constraints, representing the maximum probability
of constraint satisfaction. The learning-based MPC can be
formulated as follows:

min
νk+i

E

(
N−1∑
i=1

l(xl
k+i, u

l
k+i) +Q(xl

k+N , ul
k+N)

)
(32)

s.t. xl
k+i+1 = fd(x

l
k+i, u

l
k+i) + dVFE(x

l
k+i, u

l
k+i) (33)

ul
k+i = Kxl

k+i −Kxeq + ueq + νk+i (34)

P(−xl ≤ xl
k+i+1 ≤ xl) ≥ 1− ϵ (35)

ul
k+i ∈ U l (36)

xl
k = xl

0 (37)
∀i = 0, 1, · · · , N − 1

where K is the local feedback gain, which can be calculated
by the LQR [30, 31]. ϵ represents the significance level of
constraint violation. The optimization problem of MPC cannot
be solved directly due to the chance constraint (35). Then,
the chance constraint is reformulated by the double half-space
constraint [13].

xl becomes a random variable that follows the Gaussian
distribution. Its mean and the variance are denoted by µxl

and
Σxl

, respectively. Given Eq. (31), the mean and variance of
the predicted state can be expressed as follows:

µxl

k+1 = fd(µ
xl

k , ul
k) + µdv (µxl

k , ul
k) (38)

Σxl

k+1 = ÃΣxl

k Ã⊤ +Σdv (µxl

k , ul
k) + Σw (39)

where Ã = ∇(fd(x
l
k, u

l
k,)) + µdv (xl

k, u
l
k)|µxl

k

.

The error between the state and its mean is denoted by ex
l

,
which can be transformed to the normal distribution Cex

l ∼
N (0, CTΣxl

C).

Definition 1 (Probabilistic Reachable Set). A set is a proba-
bilistic reachable set of significance level ϵ if

P(ex
l

∈ R) ≥ 1− ϵ (40)

Then the constraint of the mean µxl

is defined as follows:

µxl

∈ X µ = X xl

⊖R (41)

where X xl

= {xl| − xl ≤ xl ≤ xl}. Satisfaction of the
tightened constraint Eqs. (40) and (41) implies satisfaction
of the original chance constraint Eq. (35) since P(xl =

µxl

+ ex
l ∈ X xl

) ≥ P(ex
l ∈ R) ≥ 1 − ϵ. The quantile

function z(ϵ/2) is used to change the probabilistic reachable
set to a deterministic constraint:

R
(
Σxl

k

)
=

{
ex

l

∣∣∣∣exl

≤
∣∣∣∣z(ϵ/2)√C⊤Σxl

k C

∣∣∣∣} (42)

Then the equivalent satisfaction of the chance constraint (35)
is defined as:

X µ
(
Σxl

k

)
= X xl

⊖R
(
Σxl

k

)
=

{
xl
k

∣∣∣∣ ∣∣xl
k − xl

∣∣ ≤ z(ϵ/2)
√

C⊤Σx
kC

}
(43)

To achieve computational efficiency, the estimation of the
cost function utilizes the mean and variance of the state [13].
The optimization problem (32) can be transformed into a
solvable MPC problem as follows:

min
νk+i

N−1∑
i=1

(
∥µxl

k+i − xeq∥2Q + ∥ul
k+i − ueq∥2Λl

)
+ ∥µxl

k+N − xeq∥2Q (44)

s.t. µxl

k+1+i = fd(µ
xl

k+i, u
l
k+i) + dVFE(µ

xl

k+i, u
l
k+i) (45)

ul
k+i = Kµxl

k+i −Kxeq + ueq + νk+i (46)

Σxl

k+1+i = Ãk+iΣ
xl

k+iÃ
⊤
k+i +Σdv (µx

k+i, u
l
k+i) (47)

µxl

k+i ∈ X µ(Σxl

k+i) (48)

ul
k+i ∈ U l (49)

µxl

k = xl
0 (50)

∀i = 0, 1, · · · , N − 1

where Q and Λl are weight matrices. The first element of
the solution ul,∗

k =
[
δ∗ F ∗

xr

]T
is then implemented as the

control command.

VI. SIMULATION RESULT

A. Simulation Setup

A clothoid reference trajectory is generated with the cur-
vature of the trajectory ranging from 1/40 to 1/21 over a
distance of 265 m [9]. The reference sideslip angle is -0.61 rad.
The vehicle starts to run at the speed of 50 km/h.

Initially, without the friction coefficient mismatch, the con-
troller’s ability to track a varying curvature trajectory is
verified without compensating the model error using GP.
The comparison with the State-of-the-Art drift controllers
can found in Appendix VIII-B. Subsequently, employing the
same controller, the vehicle tracks the second lap with a
2% reduction in the friction coefficient of the vehicle model.
After collecting data from the second lap, the learning-based
controller is activated on the third lap. It continues learning
for a total of five laps to test the controller’s ability to track
the trajectory under model mismatch conditions.

Additionally, the proposed controller SVMPC will be com-
pared with four kinds of controllers to demonstrate the effec-
tiveness of model error learning.

• TMPC: the same control structure as SVMPC but with-
out GP compensation.

• SVMPC-1: the same control structure with a single VFE
to fit the model error.

• FCMPC: the same control structure with a single FITC
to fit the model error.

• FGMPC: the same control structure with a single full
GP to fit the model error.

In the specific implementation of the algorithm, three states,
including velocity, sideslip angle, and yaw rate, are selected
for error compensation, indicating that the GP dimension is
nd = 3. The number of inducing points is set to M=15.
To prevent the dataset from continuously expanding and be-
coming unsuitable for real-time requirements, outlier removal
and information gain are used to limit the dataset size to
N=200 [14]. d1V and d2V are optimized using 100 data points
each, depending on whether the vehicle enters a deep drift
state. In contrast, STMPC-1, FCMPC, and FGMPC each train
only one GP model. The experiment is carried out on a MAT-
LAB and CarSim joint simulation platform. The simulation is
executed on a computer with Windows 10 OS equipped with
an Intel i7 processor clocked at 1.8 GHz. FORCES Pro [32]
is used to solve the MPC optimization problem. Similar to
[13], the variance dynamics (47) are pre-evaluated based on
the previous MPC solution, enabling the precomputation of
state constraints (48) and meeting real-time requirements. The
vehicle and controller parameters can be found in Table I.

B. Simulation Results

Following the simulation results of the first lap shown in
Fig. 1, it can be observed that the red vehicle controlled
by TMPC successfully followed the trajectory while drifting,
demonstrating the capability in tracking complex trajectories.
Before the start of the second lap, the ground friction co-
efficient was reduced by 2%, making the surface slipperier

Table II: Experimental Results of FGMPC with 2% Friction
Reduction.

Lap Avg. e (m) Max. e (m) V β r

∥eGP∥1 1 − ϵ(%) ∥eGP∥1 1 − ϵ(%)2 ∥eGP∥1 1 − ϵ(%)2

1 0.4399 1.5593 - - - - - -
2 1.3464 5.2684 - - - - - -
3 0.4555 0.9182 0.0132 75.43 0.0035 95.43 0.0636 70.86
4 0.6445 1.6680 0.0188 64.41 0.0038 78.53 0.0576 53.11
5 0.3889 0.9398 0.0129 66.29 0.0030 91.43 0.0651 65.71
6 0.4244 0.9602 0.0173 48.57 0.0028 78.86 0.0642 50.86
7 0.4676 1.0129 0.0160 61.71 0.0023 86.86 0.0651 50.29

1 eGP represent the difference between the predicted error of the Full GP
and the actual error.

2 1− ϵ indicates the percentage of actual error data that falls within the 95%
confidence interval of the Full GP.

Table III: Experimental Results of FCMPC with 2% Friction
Reduction.

Lap Avg. e (m) Max. e (m) V β r

∥eGP∥1 1 − ϵ(%) ∥eGP∥1 1 − ϵ(%)2 ∥eGP∥1 1 − ϵ(%)2

1 0.4399 1.5593 - - - - - -
2 1.3464 5.2684 - - - - - -
3 0.8165 3.1676 0.0200 93.96 0.0050 98.35 0.0485 96.70
4 0.5839 1.2607 0.0153 94.32 0.0051 98.30 0.0308 96.59
5 0.9818 3.0102 0.0193 95.63 0.0036 97.81 0.0401 95.63
6 0.7250 2.3478 0.0177 94.54 0.0050 96.17 0.0430 83.06
7 1.1279 2.3833 0.0263 92.15 0.0044 96.34 0.0295 96.86
1 eGP represent the difference between the predicted error of the FITC and

the actual error.
2 1− ϵ indicates the percentage of actual error data that falls within the 95%

confidence interval of the FITC.

Table IV: Experimental Results of SVMPC-1 (ours) with 2%
Friction Reduction.

Lap Avg. e (m) Max. e (m) V β r

∥eGP∥1 1 − ϵ(%) ∥eGP∥1 1 − ϵ(%)2 ∥eGP∥1 1 − ϵ(%)2

1 0.4399 1.5593 - - - - - -
2 1.3464 5.2684 - - - - - -
3 0.4507 1.2921 0.0109 89.20 0.0025 96.02 0.0247 85.23
4 0.4429 0.9797 0.0122 81.36 0.0048 88.14 0.0508 78.53
5 0.4008 0.8657 0.0091 88.57 0.0019 93.14 0.0283 88.00
6 0.4160 0.9028 0.0137 82.86 0.0035 92.57 0.0352 85.14
7 0.4449 1.1749 0.0104 85.23 0.0024 97.16 0.0316 82.95

1 eGP represents the difference between the predicted error of VFE and the
actual error.

2 1− ϵ indicates the percentage of actual error data that falls within the 95%
confidence interval of the VFE.

Table V: Experimental Results of SVMPC (ours) with 2%
Friction Reduction.

Lap Avg. e (m) Max. e (m) V β r

∥eGP∥1 1 − ϵ(%) ∥eGP∥1 1 − ϵ(%)2 ∥eGP∥1 1 − ϵ(%)2

1 0.4399 1.5593 - - - - - -
2 1.3464 5.2684 - - - - - -
3 0.5193 1.1631 0.0143 68.57 0.0070 81.14 0.0307 65.14
4 0.4830 1.1218 0.0107 72.57 0.0050 75.43 0.0120 70.29
5 0.3765 0.9077 0.0081 89.66 0.0025 90.80 0.0176 85.06
6 0.3864 0.9013 0.0136 86.21 0.0029 91.38 0.0185 75.86
7 0.3807 0.9056 0.0079 86.78 0.0024 91.38 0.0150 83.33

1 eGP represents the difference between the predicted error of VFE and the
actual error.

2 1− ϵ indicates the percentage of actual error data that falls within the 95%
confidence interval of the VFE.

1 2 3 4 5 6 7

iteration

0.5

1

1.5

A
ve

ra
ge

 E
rr

or
(m

)

Average Lateral Error

FGMPC
SVMPC-1
SVMPC
FCMPC

1 2 3 4 5 6 7

iteration

0

2

4

6

M
ax

 E
rr

or
(m

)

Max Lateral Error

FGMPC
SVMPC-1
SVMPC
FCMPC

Figure 5: Average lateral errors for the controllers.

and increasing the difficulty for the blue vehicle controlled by
TMPC to track the trajectory. Fig. 5 shows that the maximum
lateral error of the TMPC reached 5.27 m in the second
lap, which is three times the maximum error of the first lap.
This indicates the risk associated with the vehicle drifting on
unknown surfaces.

After collecting data from the second lap, we conducted
offline optimization to compute the hyperparameters and the

1 2 3 4 5 6 7

Iteration

-6

-4

-2

0

2

La
te

ra
l E

rr
or

(m
)

FGMPC

1 2 3 4 5 6 7

Iteration

-6

-4

-2

0

2

La
te

ra
l E

rr
or

(m
)

FCMPC

1 2 3 4 5 6 7

Iteration

-6

-4

-2

0

2

La
te

ra
l E

rr
or

(m
)

SVMPC-1

1 2 3 4 5 6 7

Iteration

-6

-4

-2

0

2

La
te

ra
l E

rr
or

(m
)

SVMPC

Figure 6: Lateral error boxplots for controllers.

inducing points. Subsequently, we carried out five-lap learning
tests on SVMPC, SVMPC-1, FCMPC, and FGMPC. As shown
in Table V, our proposed method achieved an average lateral
error of 0.38 m after learning for five laps, which is 72%
smaller than the lateral error (1.35 m) in the second lap.
Moreover, its average lateral error and maximum lateral error
are even 13% and 42% smaller, respectively, compared to the

-30 -20 -10 0 10 20 30 40

X(m)

-10

0

10

20

30

40

50

60

70

Y
(m

)

Trajectory

REFERENCE
FGMPC
SVMPC
SVMPC-1
FCMPC
Deep Drift Flag

Figure 7: Comparison of track performance in different con-
trollers in the final lap.

0 2 4 6 8 10 12 14 16 18 20
Time(s)

10

15

20

V
(m

/s
)

V

TMPC
SVMPC

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-1

-0.5

0

(r
ad

/s
) TMPC

REFERENCE
SVMPC

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-1

0

1

2

r(
ra

d/
s)

r

TMPC
SVMPC

Figure 8: Comparison of states between the first lap without
GP compensation in TMPC and the last lap in SVMPC under
2% friction coefficient loss.

controller without model mismatch in the first lap. This con-
troller demonstrates the ability to improve trajectory tracking
performance under model mismatch conditions by learning the
model errors. As for maintaining the drift state, after model
error learning, the SVMPC shows better tracking of the refer-
ence sideslip angle compared TMPC, shown in Fig. 8. At 2.4 s,
the vehicle’s slip angle and steering angle reach -0.37 rad and
-0.41 rad, respectively, exceeding the critical values. At this
point, the vehicle enters a deep drift state. Table II, Table III,
and Table IV illustrate the complete model error learning
process for FGMPC, FCMPC, and SVMPC-1, respectively.
The lateral error comparison between Table IV and Table V
demonstrates that by establishing sparse variational Gaussian
processes before and after entering deep drift, SVMPC can
track the trajectory better than SVMPC-1. Additionally, the
experimental results of the lateral error and trajectories in
Table III and Fig. 7 indicate that VFE-based MPC outperforms
FITC-based MPC in trajectory tracking. Table II shows that the
Full GP-based MPC achieved the smallest maximum lateral
error of 0.92 m in the third lap, although its overall tracking

performance was weaker than that of SVMPC. The model
error learning comparsion can be found in Appendix VIII-C.

VII. CONCLUSION

This paper proposes a method that integrates variational
sparse Gaussian processes with a two-layer model predictive
controller to tackle model mismatch challenges when a drifting
vehicle is tracking complex trajectories. Compared to three
state-of-the-art drift controllers, simulation results demonstrate
that the proposed TMPC achieves at least a 43% improvement
in tracking performance on the trajectory with varying curva-
ture. In scenery where the model’s friction coefficient loss is
2%, experimental results show that the tracking performance
of the VFE-based MPC controller is superior to that of the
FITC-based MPC controller. Additionally, splitting the sparse
model into two local Gaussian processes based on whether the
vehicle enters a drift state significantly improves the accuracy
of GP predictions. Compared to FGMPC, the proposed method
is ten times faster regarding solution time and achieves better
tracking performance.

Future work will focus on enriching the GP dataset to
enhance the efficiency of learning while ensuring the stability
of the controller.

ACKNOWLEDGMENTS

Cheng Hu and Yangyang Xie are equally contributed. Lei
Xie is the corresponding author. Thanks to Xiaoling Zhou and
Ran Duo for their valuable suggestions. Thanks to PBL staff
for the support and help.

REFERENCES

[1] Ekim Yurtsever, Jacob Lambert, Alexander Carballo,
and Kazuya Takeda. A survey of autonomous driving:
Common practices and emerging technologies. IEEE
access, 8:58443–58469, 2020.

[2] Fang Zhang, Jon Gonzales, Shengbo Eben Li, Francesco
Borrelli, and Keqiang Li. Drift control for cornering
maneuver of autonomous vehicles. Mechatronics, 54:
167–174, 2018.

[3] Rami Y Hindiyeh and J Christian Gerdes. A controller
framework for autonomous drifting: Design, stability, and
experimental validation. Journal of Dynamic Systems,
Measurement, and Control, 136(5):051015, 2014.

[4] Sina Milani, Hormoz Marzbani, and Reza N Jazar.
Vehicle drifting dynamics: discovery of new equilibria.
Vehicle system dynamics, 60(6):1933–1958, 2022.

[5] Haotian Dong, Huilong Yu, and Junqiang Xi. Phase
portrait analysis and drifting control of unmanned tracked
vehicles. IEEE Transactions on Intelligent Vehicles,
2024.

[6] Efstathios Velenis, Emilio Frazzoli, and Panagiotis Tsio-
tras. Steady-state cornering equilibria and stabilisation
for a vehicle during extreme operating conditions. Inter-
national Journal of Vehicle Autonomous Systems, 8(2-4):
217–241, 2010.

[7] Eunhyek Joa, Hyunsoo Cha, Youngjin Hyun, Youngil
Koh, Kyongsu Yi, and Jaeyong Park. A new control
approach for automated drifting in consideration of the
driving characteristics of an expert human driver. Control
Engineering Practice, 96:104293, 2020.

[8] Efstathios Velenis, Diomidis Katzourakis, Emilio Fraz-
zoli, Panagiotis Tsiotras, and Riender Happee. Steady-
state drifting stabilization of rwd vehicles. Control
Engineering Practice, 19(11):1363–1376, 2011.

[9] Jonathan Y Goh, Tushar Goel, and J Christian Gerdes.
Toward automated vehicle control beyond the stabil-
ity limits: drifting along a general path. Journal of
Dynamic Systems, Measurement, and Control, 142(2):
021004, 2020.

[10] Jonathan Y Goh and J Christian Gerdes. Simultaneous
stabilization and tracking of basic automobile drifting tra-
jectories. In 2016 IEEE Intelligent Vehicles Symposium
(IV), pages 597–602. IEEE, 2016.

[11] Fengjiao Jia, Houhua Jing, and Zhiyuan Liu. A novel
nonlinear drift control for sharp turn of autonomous ve-
hicles. Vehicle System Dynamics, 62(2):490–510, 2024.

[12] Mincheol Park and Yeonsik Kang. Experimental verifica-
tion of a drift controller for autonomous vehicle tracking:
A circular trajectory using lqr method. International
Journal of Control, Automation and Systems, 19(1):404–
416, 2021.

[13] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger.
Cautious model predictive control using gaussian pro-
cess regression. IEEE Transactions on Control Systems
Technology, 28(6):2736–2743, 2019.

[14] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and
Melanie N Zeilinger. Learning-based model predictive
control for autonomous racing. IEEE Robotics and
Automation Letters, 4(4):3363–3370, 2019.

[15] Guoying Chen, Xuanming Zhao, Zhenhai Gao, and Min
Hua. Dynamic drifting control for general path tracking
of autonomous vehicles. IEEE Transactions on Intelli-
gent Vehicles, 2023.

[16] Jonathan YM Goh, Michael Thompson, James Dallas,
and Avinash Balachandran. Beyond the stable handling
limits: nonlinear model predictive control for highly
transient autonomous drifting. Vehicle System Dynamics,
pages 1–24, 2024.

[17] Haotian Dong, Huilong Yu, and Junqiang Xi. Real-
time model predictive control for simultaneous drift and
trajectory tracking of autonomous vehicles. In 2022 6th
CAA International Conference on Vehicular Control and
Intelligence (CVCI), pages 1–6. IEEE, 2022.

[18] Yu Qi, Zhiming Zhang, Cheng Hu, Xiaoling Zhou, Lei
Xie, and Hongye Su. An mpc-based controller frame-
work for agile maneuvering of autonomous vehicles. In
2021 IEEE Intelligent Vehicles Symposium (IV), pages
1228–1234. IEEE, 2021.

[19] Cheng Hu, Xiaoling Zhou, Ran Duo, Haokun Xiong,
Yu Qi, Zhiming Zhang, and Lei Xie. Combined fast
control of drifting state and trajectory tracking for au-

tonomous vehicles based on mpc controller. In 2022
International Conference on Robotics and Automation
(ICRA), pages 1373–1379. IEEE, 2022.

[20] Mark Cutler and Jonathan P How. Autonomous drifting
using simulation-aided reinforcement learning. In 2016
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5442–5448. IEEE, 2016.

[21] Peide Cai, Xiaodong Mei, Lei Tai, Yuxiang Sun, and
Ming Liu. High-speed autonomous drifting with deep
reinforcement learning. IEEE Robotics and Automation
Letters, 5(2):1247–1254, 2020.

[22] Manuel Acosta and Stratis Kanarachos. Teaching a
vehicle to autonomously drift: A data-based approach
using neural networks. Knowledge-Based Systems, 153:
12–28, 2018.

[23] Xiaoling Zhou, Cheng Hu, Ran Duo, Haokun Xiong,
Yu Qi, Zhiming Zhang, Hongye Su, and Lei Xie.
Learning-based mpc controller for drift control of au-
tonomous vehicles. In 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC),
pages 322–328. IEEE, 2022.

[24] Franck Djeumou, Jonathan YM Goh, Ufuk Topcu, and
Avinash Balachandran. Autonomous drifting with 3
minutes of data via learned tire models. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pages 968–974. IEEE, 2023.

[25] Matthias Bauer, Mark Van der Wilk, and Carl Edward
Rasmussen. Understanding probabilistic sparse gaussian
process approximations. Advances in neural information
processing systems, 29, 2016.

[26] Michalis Titsias. Variational learning of inducing vari-
ables in sparse gaussian processes. In Artificial intelli-
gence and statistics, pages 567–574. PMLR, 2009.

[27] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei
Cai. When gaussian process meets big data: A review of
scalable gps. IEEE transactions on neural networks and
learning systems, 31(11):4405–4423, 2020.

[28] Joaquin Quinonero-Candela and Carl Edward Ras-
mussen. A unifying view of sparse approximate gaussian
process regression. The Journal of Machine Learning
Research, 6:1939–1959, 2005.

[29] Hans B Pacejka and Egbert Bakker. The magic formula
tyre model. Vehicle system dynamics, 21(S1):1–18, 1992.

[30] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and
Claire Tomlin. Provably safe and robust learning-based
model predictive control. Automatica, 49(5):1216–1226,
2013.

[31] Ben Tearle, Kim P Wabersich, Andrea Carron, and
Melanie N Zeilinger. A predictive safety filter for
learning-based racing control. IEEE Robotics and Au-
tomation Letters, 6(4):7635–7642, 2021.

[32] Andrea Zanelli, Alexander Domahidi, Juan Jerez, and
Manfred Morari. Forces nlp: An efficient implementa-
tion of interior-point methods for multistage nonlinear
nonconvex programs. International Journal of Control,
93(1):13–29, 2020.

VIII. APPENDIX

A. Variational Free Energy Gaussian process

VFE method involves jointly inferring the inducing points
and the hyperparameters by maximizing a lower bound of the
marginal likelihood. Specifically, the approximate posterior
is assumed to be q(f, fz|Y) = p(f|fz)ϕ(fz), where ϕ(fz) is
a variational distribution over fz . This assumption enables a
critical cancellation that results in a computationally tractable
lower bound. The bound can be obtained by utilizing Jensen’s
inequality:

log p(Y) = log

∫
p (f |fz)ϕ (fz)

p(Y|f)p (f |fz) p (fz)
p (f |fz)ϕ (fz)

dfdfz

≥
∫

p(f|fz)ϕ(fz) log
p(Y|f)���p(f|fz)p(fz)

���p(f|fz)ϕ(fz)
dfdfz

= FV (ϕ(fz), σ2,Λ−1,Σω) (51)

where FV is the lower bound. The closed-form expressions
for the optimal variational bound can be derived as follows:

FV = logN (Y; 0, QZZ + IΣω)− 1

2Σω
Tr(KZZ −QZZ)

=
N

2
log 2π +

1

2
log |QZZ + IΣω|

+
1

2
Y⊤(QZZ + IΣω)−1Y − 1

2Σω
Tr(KZZ −QZZ) (52)

with the optimal variation distribution ϕ∗(fz).
Then we can infer the approximation of the predictive

Gaussian p(y∗|Y, z∗) at the test point z∗:

q(y∗|Y, z∗) =

∫
p(y∗|fz)p(f|fz)ϕ∗(fz)dfdfz

=

∫
p(y∗|fz)ϕ∗(fz)dfz (53)

with the assumption that y∗ and f are independent, given fz .
The mean and covariance function of the approximate

posterior GP are as follows:

µv(z∗) = (Σω)−1Kz∗Zm
(W)−1KZmZY (54)

Σv(z∗) = Kz∗z∗ −Qz∗z∗ +Kz∗Zm
(W)−1kZmz∗ (55)

with W = KZmZm
+ (Σω)−1KZmZKZZm

. For nd output
dimensions, the VFE based Gaussian process can be denoted
by

dV ∼ N (µV (z∗),ΣV (z∗)) (56)

with µV = [µv
1, . . . , µ

v
nd
]⊤ and ΣV = diag([Σv

1, . . . ,Σ
v
nd
]).

B. Comparison with State-of-the-Art Drift Control

To validate the drift and tracking ability of the proposed
Two-layer Model Predictive Controller (TMPC) without sparse
Gaussian error compensation, we compared it against three
state-of-the-art drift controllers. These include the uncon-
strained nonlinear controller MARTY [9], the MPC controller
DDTC [17], which simultaneously manages both drifting and
trajectory tracking, and the MPC-HDDC controller [15], which

combines nonlinear mapping with MPC based on the MARTY
framework.

As shown in Fig. 10 and Fig. 11, all the controllers, rep-
resented by different colors, successfully track the trajectory
while drifting. The comparison results of the controllers are
presented in Fig. 11, Fig. 12, and Table VI. Since MARTY
is a nonlinear controller that does not consider constraints
when mapping control inputs, the vehicle’s state, as depicted
in Fig. 12, is less smooth compared to the other controllers.
Its advantage is the use of numerical methods for nonlin-
ear mapping, resulting in minimal computational time. The
DDTC, which optimizes both drifting and trajectory tracking
simultaneously, produces smoother state outputs. However,
due to the need to consider both objectives simultaneously,
its average lateral error and maximum lateral error are 0.89
m and 1.67 m, respectively, as shown in Table VI, which
are 105% and 8% larger than those of the TMPC. MPC-
HDDC separates trajectory tracking and drift state control,
using a point mass model to formulate the MPC problem
for trajectory tracking. Compared to MARTY, this approach
results in smoother state transitions and enhanced tracking
performance. However, the inherent nonlinear mapping of
the drift state continues to obtain suboptimal control inputs,
making its tracking performance inferior to that of TMPC. The
results summarized in Table VI indicate that by decoupling the
drifting and tracking problems, the TMPC achieved a 55%,
43%, and 51% reduction in average lateral error compared to
MARTY, MPC-HDDC, and DDTC, respectively, demonstrat-
ing better trajectory tracking capability.

Table VI: Simulation Results of drift controllers.

Controller Avg. e(m) Avg. e Reduction (%) Max. e(m) Computation time(ms)

MARTY [9] 0.9598 54.78 1.9221 0.6759
MPC-HDDC [17] 0.7679 43.49 1.8092 3.2329
DDTC [15] 0.8888 51.14 1.6743 2.7649
TMPC (Ours) 0.4342 - 1.5481 9.2895

C. Model Error Learning Comparsion

Regarding the comparison in model error learning, Fig. 9
demonstrates that compared to FGMPC, FCMPC, and
SVMPC-1, the SVMPC prediction performance is better.
Specifically, as shown in Table V for the GP section, the
prediction errors of the three states for the SVMPC in the final
lap are reduced by half compared to the third lap. The three
GPs in the SVMPC cover 86.78%, 91.38%, and 83.33% of the
actual error data within the 95% confidence interval at the end.
FCMPC suffers from underfitting due to the prediction vari-
ance estimation. Although it covers the highest percentage of
data, it has the largest prediction errors according to Table III.
While FGMPC demonstrates more accurate predictions than
those controllers in the sideslip angle dimension in Table II,
the final prediction error of the sideslip angle is only 0.0001
m smaller than that of SVMPC and SVMPC-1. Moreover,
FGMPC fails to meet real-time requirements (0.35 s), with its
computation time being ten times that of SVMPC (0.03 s) as
shown in Fig. 13.

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.1

-0.05

0

0.05

V(
m/

s)
Velocity Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.04
-0.02

0
0.02
0.04

(ra
d/s

)

Beta Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18
Time(s)

0

0.2

0.4

r(r
ad

/s)

Yaw Rate Compensation

Real data
Predictive mean

(a) Full GP based error prediction in FGMPC.

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-0.2

-0.1

0

0.1

V(
m/

s)

Velocity Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-0.06
-0.04
-0.02

0
0.02

(ra
d/s

)

Beta Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-0.5

0

0.5

r(r
ad

/s)

Yaw Rate Compensation

Real data
Predictive mean

(b) FITC based error prediction in FCMPC.

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.1

-0.05

0

V(
m/

s)

Velocity Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.06
-0.04
-0.02

0
0.02

(ra
d/s

)

Beta Compensation

Real data
Predictive mean

0 2 4 6 8 10 12 14 16 18
Time(s)

0

0.2

0.4

r(r
ad

/s)

Yaw Rate Compensation

Real data
Predictive mean

(c) Single VFE based error prediction in SVMPC-1 (Ours).

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.1

-0.05

0

V(
m/

s)

Velocity Compensation

Real data
Predictive mean trans
Predictive mean deep

0 2 4 6 8 10 12 14 16 18
Time(s)

-0.04

-0.02

0

0.02

(ra
d/s

)

Beta Compensation

Real data
Predictive mean trans
Predictive mean deep

0 2 4 6 8 10 12 14 16 18
Time(s)

0

0.2

0.4

r(r
ad

/s)

Yaw Rate Compensation

Real data
Predictive mean trans
Predictive mean deep

(d) Two local VFE based error prediction in SVMPC (Ours).

Figure 9: Comparison of GP prediction performance with 95% confidence level in different controllers at the final lap.

Figure 10: Animation in CarSim at time 11.5s. The green car
represents HDDC, the blue car represents DDTC, the yellow
car represents TMPC (ours), and the purple car represents
MARTY.

-30 -20 -10 0 10 20 30 40

X(m)

-10

0

10

20

30

40

50

60

70

Y
(m

)

Trajectory

REFERENCE
HDDC
DDTC
MARTY
TMPC

Figure 11: Trajectory tracking in CarSim simulation: TMPC
(ours) vs. state-of-the-art controllers.

0 2 4 6 8 10 12 14 16 18 20
Time(s)

13
14
15
16
17

V
(m

/s
)

V

HDDC
DDTC
MARTY
TMPC

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-1

-0.5

0

(r
ad

) HDDC
DDTC
MARTY
TMPC
REFERENCE

0 2 4 6 8 10 12 14 16 18 20
Time(s)

0

0.5

1

r(
ra

d/
s)

r

HDDC
DDTC
MARTY
TMPC

Figure 12: Vehicle states in CarSim simulation: TMPC (ours)
vs. state-of-the-art controllers.

0 100 200 300 400 500 600

Computation Time (ms)

0%

5%

10%

15%

N
or

m
al

iz
ed

 O
cc

ur
re

nc
es

 (
%

)

Computation Time Histogram

SVMPC: mean = 33.77ms, var = 13.14ms
FGMPC: mean = 346.00ms, var = 104.00ms
FCMPC: mean = 13.44ms, var = 7.01ms
SVMPC1: mean = 53.52ms, var = 9.43ms

Figure 13: Computation time.

	Introduction
	Related Work
	Classical drift controllers
	Learning based drift controllers

	Preliminary
	Gaussian Process Regression
	Sparse Gaussian Process

	Vehicle Model and analysis
	Drift Dynamics
	Drift Steady Analysis

	Methodology
	Variational Free Energy Gaussian process
	Trajectory Tracking layer
	Learning-based Control Layer

	Simulation Result
	Simulation Setup
	Simulation Results

	Conclusion
	Appendix
	Variational Free Energy Gaussian process
	Comparison with State-of-the-Art Drift Control
	Model Error Learning Comparsion

