
Experimental verification of a scalable protocol
for vehicle platooning

Thijs van Oorschot
Department of Dynamics & Control
Eindhoven University of Technology

5600 MB Eindhoven, The Netherlands
Email: t.j.a.v.oorschot@student.tue.nl

Mark Jeeninga
Department of Automatic Control

Lund University
SE-221 00 Lund, Sweden

Email: mark.jeeninga@control.lth.se

Emma Tegling
Department of Automatic Control

Lund University
SE-221 00 Lund, Sweden

Email: emma.tegling@control.lth.se

Abstract—This paper is concerned with a recently proposed
scalable protocol for vehicle platooning, known as the serial
consensus protocol. This achieves coordination of second-order
integrator systems through a series connection of first-order con-
ventional consensus protocols, and has been theoretically shown
to have advantageous stability and performance properties. We
implement this protocol on a vehicle platoon of five robots in a
lab setting, where it is subject to measurement noise. We present
experimental verification that the system is scalably stable, which
is in accordance with theoretical findings. Moreover, we show
theoretically that the parameters for which scalable stability
occurs can be relaxed when information of the communication
topology is available, which is also verified experimentally. In
parallel, a conventional consensus protocol is implemented, which
is known to not be scalably stable, which we also demonstrate in
experiments. Lastly, we implement experiments to demonstrate
the string stable behavior of the the serial consensus protocol
in directed vehicle platoons, as predicted by theory, which again
does not hold for conventional consensus.

I. INTRODUCTION

The problem of vehicle platooning deals with the coordina-
tion of multiple vehicles using inter-vehicular measurements
and/or limited communication. In its simplest form, it can be
phrased as a mathematical control problem, where the goal is
to design a control algorithm to follow a leader vehicle while
maintaining a fixed inter-vehicular distance, or to achieve
consensus among the behavior of all vehicles in the platoon.
More abstractly, this problem corresponds to a synchronization
or consensus problem, since we want to achieve consensus
among the positions1, velocities and accelerations of all vehi-
cles in the platoon.

Synchronization, in turn, is a central topic in multi-agent
systems which asks how and under which conditions a network
of agents achieves consensus through distributed control laws.
In addition, multi-agent systems typically feature a degree
of locality, typically described by the network-topological
constraints of the system. For synchronization problems, it is
natural to formulate a control law based on relative feedback,
which means that only measurements of the differences be-
tween states such as position, velocities and acceleration are
available to the controller, for example implemented through

1More precisely, the position is with respect to some constant inter-vehicular
distance between neighboring vehicles. Synchronization of the exact position
means that vehicles collide, which is naturally undesirable.

radar measurements between neighbors. Jensen and Bamieh
[4] give a thorough exposition on the topics of locality and
relative feedback.

In this work, we are interested in distributed protocols for
vehicle formations, subject to the locality constraints imposed
by the string topology that is natural in traffic situations or
platooning. Such protocols are known to feature unfavorable
dynamic behaviors when the network grows large, including
the well researched problem of string instability [7, 5] as well
as scale fragilities [8] which imply that closed-loop stability
is lost if the platoon grows beyond a certain size—e.g. see [6].

A recent paper by Hansson and Tegling [2] introduces a
novel consensus protocol, referred to as the serial consensus
protocol, and mathematically proves that the protocol results
in a platoon that is both scalably stable and string stable [3].
This is achieved by a closed-loop design that replaces the
conventional second-order consensus protocol by two first-
order ones connected in series, and comes at the cost of
(at most) one additional inter-vehicle communication step.
The purpose of the current paper is to provide experimental
verification of these results, and to compare its performance
and robustness with a conventional approach. In addition, we

Fig. 1. A platoon of omnibots travelling along the circular trajectory.

present a relaxation of the serial consensus algorithm, for
which we mathematically prove and experimentally verify
its scalable stability. It is demonstrated that this relaxation,
however, leads to a loss of string stability.

The serial consensus protocol discussed in [2] only de-
scribes the behavior along the road that the platoon is fol-
lowing, and only applies to longitudinal control. To verify
the protocol in a lab setting, we have implemented both
protocols on vehicles that follow a circular trajectory. Given
the limited range of our sensory setup, this means that long-
duration experiments may be performed. It is noted that
our experimentation setup is subject to measurement noise
and features a discrete-time implementation of the protocols,
both of which were not covered by the theory in [2]. We
therefore argue that this provides a realistic implementation
and verification of the protocol.

The remainder of this paper is structured as follows. In
Section II we introduce the vehicle model and describe both
the serial consensus protocol and a conventional consensus
protocol for vehicle platooning. Section III presents the exper-
imentation setup that is pursued in the paper. In Section IV
we present the results of the experiments, and discuss to what
extent our results support the theory developed in [2, 3]. The
paper is concluded in Section V.

Notation

The time derivative of a signal x(t) is denoted by ẋ(t). We
let 1k denote the all-ones vector of dimension k. We define
the clipping function clip(x; a, b) for scalars a < b as

clip(x; a, b) :=

{
a if x ≤ a

x if a < x < b

b if b ≥ x

.

We define the wrapping function wrap(x; r) as

wrap(x; r) :=

{
r(x+ 2π) if x < −π

rx if − π ≤ x ≤ π

r(x+ 2π) if b > π

.

II. PRELIMINARIES AND THEORETICAL BACKGROUND

A. Vehicle model

Throughout this paper we consider a platoon of N vehicles.
The vehicles are numbered such that vehicle i = 1 is the first
vehicle in the platoon, and vehicle i = N is the last vehicle.
We assume that all vehicles in the platoon adhere to the same
trajectory, and our goal is to control their position along the
trajectory. For each vehicle i, we model this position by the
scalar xi, as depicted in Figure 2. Our aim is to control the
vehicles in the platoon such that their inter-vehicular distance
converges to a fixed value ∆s∗. That is, we want to design
controllers such that the positions xi converge to

xi = xi+1 +∆s∗ for i = 1, . . . , N − 1. (1)

By defining the change of coordinates

x̂i(t) := xi(t)− (i− 1)∆s∗

we observe that (1) is equivalent to

x̂i(t) = x̂i+1(t) for i = 1, . . . , N − 1. (2)

We note from (2) that converging to a fixed inter-vehicular
distance corresponds to achieving consensus among all vehi-
cles in the coordinates xi. Hence, vehicle platooning may be
regarded as a consensus or synchronization problem.

We continue to model the dynamics of the vehicles in terms
of xi(t), and collect these shifted positions in the vector x ∈
RN . Since ∆s∗ is constant, we have that ẋ(t) represents the
velocity of each vehicle along the trajectory. Similarly ẍ(t)
represent the acceleration of the vehicles. We consider the very
simplified model where each vehicle i is a point mass, and
assume it is controlled by assigning the acceleration. Hence,
we have that

ẍi(t) = ui(t). (3)

Fig. 2. Visualization of additional communication of relative position of
neighbour’s neighbour required to implement serial consensus.

B. Network model and definitions

The vehicles in the platoon can communicate according to
some communication topology. We let G =

{
V, E

}
denote

a directed graph that encodes the communication topology,
where V with |V| = N denotes the set of vehicles and E denote
the edges in the graph. The graph can be equivalently repre-
sented by the communication adjacency matrix W ∈ RN×N ,
where Wi,j = 1 ⇔ (j, i) ∈ E , and Wi,j = 0 otherwise. The
graph is called undirected if WT = W . The graph contains
a connected spanning tree if for some i ∈ V there is a path
from i to any other vertex j ∈ V . Let Ni denote the set of
neighbours of vehicle i. For a a weighted directed graph, we
associate a positive weight wi,j > 0 to each edge (i, j) ∈ E .
The associated weighted graph Laplacian is defined as

Li,j =

−wi,j , if i ̸= j∑

k ̸=i

wi,k, if i = j . (4)

A graph contains a connected spanning tree if and only if
the corresponding graph Laplacian L has a simple and unique
eigenvalue at 0 and the remaining eigenvalues lie strictly in
the right half plane (open RHP). Following the approach in
[2, 3, 8], in this work we consider networks with a growing
number of vehicles, to test the scalability properties of the
controller. To this end, we define the family of communication
graphs

{
GN

}
, where N is the size of the growing network.

C. Control design
We consider a linear second order state feedback controller,

which can be written as

u(t) = −A0x̂(t)−A1
˙̂x(t) + uref(t), (5)

where uref(t) ∈ RN is an arbitrary control signal, and
Ak ∈ RN×N defines the feedback on the kth derivative of
the vehicle shifted positions x̂. The class of controllers that
will be considered is restricted in three ways.

(i) The controller can only use relative feedback, i.e.
Ai1N = 0 for i = 0, 1. Put differently, only the inter-
vehicular measurements x̂i− x̂j and ˙̂xi− ˙̂xj are available
to the controller.

(ii) The controller must have a limited gain, i.e. ||Ai||∞ ≤
c < ∞ for i = 0, 1.

(iii) To limit the amount of communication between vehicles,
the controller must only depend on the local 2-hop neigh-
bourhood of each agent. This means that the controller
only uses information that is at most 2 steps away in
the communication network. Note that the zero-nonzero
structure of A0 and A1 determines what information is
communicated among the vehicles. Therefore, it must
hold that

∑2
k=0 W

k
i,j = 0 ⇒ [Ak]i,j = 0 for k = 1, 2.

Condition (iii) ensures that the serial consensus protocol [2]
can be implemented, as this requires a 2-hop neighbourhood
for second order agent dynamics. If a controller satisfies all
three conditions, it is called a 2-step implementable relative
feedback controller with respect to the adjacency matrix W .
The family of all r-step implementable relative feedback
controllers is given all A0, A1 ∈ RN×N that lie in the set

Ar(W, c) :=

{
A

∣∣∣∣ ∑r
k=0 W

k
i,j = 0 ⇒ Ai,j = 0

A1N = 0, ||A||∞ ≤ c

}
. (6)

D. Scalable stability & string stability
For certain graph families, consensus algorithms in multi-

agent systems where the agents have integrator dynamics of
order two or higher are sensitive to scale fragilities, meaning
that stability is lost as the network scales. To this end, we
introduce the notion of scalable stability as defined in [8].
A consensus control design is scalably stable if the resulting
closed loop system achieves consensus over any graph in the
family

{
GN

}
, meaning that it is not subject to scale fragilities.

In addition, we introduce a notion of performance for agents
with second order integrator dynamics. To this end, the relative
position ep(t) := d + Lx(t) and velocity deviation ev(t) :=
ẋ(t)− vref1N are introduced, with d ∈ RN being a vector of
desired offsets and vref ∈ R being the desired vehicle velocity.
In the context of vehicle platooning, these need to remain
small to avoid vehicle collisions. The scalar ev represents the
deviation from the desired velocity, which needs to remain
small to respect the speed limits of the vehicles. The multi-
agent system described by (3) and feedback (5) is said to be
string stable if there exists a fixed and finite α that ensures
that

sup
t≥0

∥∥∥∥[ep(t)ev(t)

]∥∥∥∥
∞

= α

∥∥∥∥[ep(0)ev(0)

]∥∥∥∥
∞

. (7)

A note on the difference between scalable stability and
sting stability is in order. In the current context, scalable
stability and string stability are two independent notions,
since the latter does not require stability. Indeed, oscillatory
trajectories of ep(t) and ev(t) can still satisfy (7), but do not
correspond to (asymptotic) consensus. Instead, string stability
is a performance notion on the transients of the consensus
dynamics.

E. Conventional consensus

The conventional consensus algorithm that is considered in
this paper is chosen so that the feedback gain matrices A0,1 in
(5) satisfy A0 = a0L and A1 = a1L for some graph Laplacian
L, with a0,1 > 0 as feedback gains. The resulting input for an
agent i is of the form

ui(t) = −a0
∑
j∈Ni

wi,j(x̂i(t)− x̂j(t))

− a1
∑
j∈Ni

wi,j(˙̂xi(t)− ˙̂xj(t)) + ui,ref(t)

This results in a 1-step implementable relative feedback con-
troller, as all Ak = akL ∈ A1(W, c).

In [8] it is shown that no conventional consensus algorithm
is scalably stable in directed ring graphs where the real part
of one or more Laplacian eigenvalues approaches zero as N
grows and at least one of these eigenvalues has a relatively
large imaginary part. More specifically, the system becomes
unstable when

a21Re{λl}

[(
Re{λl}
Im{λl}

)2

+ 1

]
− a0 < 0 (8)

for at least one l ∈ 2, . . . , N . This is clearly satisfied for
directed ring graphs, because Re{λl} → 0 when N → ∞ and
Re{λl} ≠ 0. Furthermore, conventional consensus exhibits
poor dynamic behaviour in large scale networks. The transient
error grows exponentially with the number of agents in a linear
directed graphs. Therefore, conventional consensus does not
meet the performance condition of string stability.

F. Serial consensus

The closed loop dynamics of the serial consensus in Laplace
domain are defined as

(sI + L1)(sI + L2)X̂(s) = Û(s). (9)

We impose that both L1,2 have the same underlying graph
Laplacian multiplied by the positive gains b1,2, i.e. that L1 =
b1L and L2 = b2L. By introducing the variables ξ1 = x and
ξ2 = ẋ+ b1Lx, the closed loop dynamics in state-space form
can be stated as[

ξ̇1
ξ̇2

]
=

[
−b1L I
0 −b2L

] [
ξ1
ξ2

]
+

[
0
uref

]
. (10)

The control input corresponding to this closed loop is given
by (5) where A0 = b1b2L

2 and A1 = (b1 + b2)L. For
a more intuitive notation, we introduce â0 = b1b2 and

Fig. 3. Scissor condition for di-
rected circular network with 5 ve-
hicles.

Fig. 4. Scissor condition for di-
rected circular network with 5 ve-
hicles visualized in (â0, â1).

â1 = b1 + b2, allowing the control input to be written as (5)
where A0 = â0L

2 and A1 = â1L, with â0,1 > 0 as feedback
gains. This results in a 2-step implementable relative feedback
controller, as A0 = â0L

2 ∈ A2(W, c). To implement this
controller, additional information is required to be transmitted
over the network. More specifically, this means that each agent
requires the relative position between the neighbours of all its
neighbours. This is visualized for a vehicle platoon in Figure 2.
The control law for each vehicle i is given by

ui(t) = −â0
∑
j∈Ni

wi,j

(∑
k∈Ni

wi,k(x̂i(t)− x̂k(t))

−
∑
l∈Nj

wj,l(x̂j(t)− x̂l(t))

)
− â1

∑
j∈Ni

wi,j(˙̂xi(t)− ˙̂xj(t)) + ui,ref(t)

Serial consensus has superior dynamic behaviour for large
scale networks compared to conventional consensus. In [2] it is
shown to be scalably stable for all graph families if â1 ≥ 2

√
â0

(this is equivalent to imposing that b1,2 are real valued). Here,
we generalize this condition by saying that serial consensus is
scalably stable if and only if the feedback gains â0,1 satisfy

â1 >
2√

(1
mλ

)2 + 1

√
â0, (11)

where

mλ = min

{
x

∣∣∣∣ ∣∣∣∣ Im(λl)

Re(λl)

∣∣∣∣ ≤ x ∀ l = 2, 3, . . . , N

}
(12)

defines the minimum slope of the closed conic set E which
still ensures that it contains all eigenvalues of the graph
Laplacian L (this is equivalent to imposing that b1,2 must
be complex numbers within a conic set B in the complex
plane), see Figure 3. The set B in terms of the feedback gains
(â1, â1) is denoted by K, see Figure 4. Here, we use the
information of the communication topology (more specifically,
information of the eigenvalues of the Laplacian) to relax the
stability condition. We term this relaxed condition the scissor
condition as to the relation between set E and B resembles a
scissor mechanism.

Fig. 5. Omnibot used in the experimentation setup.

Furthermore, [3] shows that serial consensus also achieves
scalable performance through string stability. More specif-
ically, when â1 > 2

√
â0, the worst-case behaviour gets

bounded by the initial maximum deviation according to (7)
with

α =
1√

â21 − 4â0
(â1 + 2max {1, â0}). (13)

III. EXPERIMENTATION SETUP

To compare serial consensus to conventional consensus,
both are implemented on robotic vehicles in an experimenta-
tion setup. The setup mimics vehicle platooning, as the agents
move over a path along which they have to achieve consensus
in cruising velocity. For practical reasons, the path is chosen
to be a circle with radius r∗. The vehicles or agents are
represented by omnibots2 (see Figure 5). The setup should
model each agent as a 2nd order integrator, where the input is
its acceleration along the circle and the states are its velocity
and travelled distance along the circular path. This requires
additional low-level control, as we should make sure that each
agent stays on the circle. We want to decouple the control, in
the sense that any deviation of an omnibot from the circle does
not influence its dynamics along the path. Figure 1 shows the
omnibots travelling over the path. A playlist containing video
recordings of several experiments can be found in [1].

A. Decoupling control by change of coordinates

The kinematic design of the omnibots allows for decoupled
control of its velocity in (x, y, θ)-coordinates in the Cartesian
plane. This gives the Cartesian dynamics of an arbitrary
omnibot i as

ẋi = vx,i

ẏi = vy,i

θ̇i = ωi.

(14)

2Omnibots are mobile robots equipped with three omniwheels, allowing for
decoupled control of its velocity.

with (vx,i, vy,i, ω) representing the Cartesian velocity inputs.
As the agents follow a circular path, a polar coordinate frame
(si, ri, θi) is introduced. Here, si = r∗ϕi ∈ [0, 2πr∗]represents
the travelled distance of agent i along the circle where ϕi =
mod (arctan(yi, xi), 2π) . ri =

√
x2
i + y2i represents the

distance of agent i w.r.t. the center of the circle. The polar
velocities in tangential direction vt,i and radial direction vr,i
are introduced. These polar velocities are related to the Carte-
sian velocities through the rotation matrix R(si) according tovx,ivy,i

ωi

 = R(si)

vr,ivt,i
ωi

 , R(si) =

cos(si
r∗) − sin(si

r∗) 0
sin(si

r∗) cos(si
r∗) 0

0 0 1

 .

(15)
To completely decouple the dynamics in the polar coordinate
frame, the new input v̂t,i is defined as v̂t,i = ri

r∗ vt,i. This
compensates for agents moving slower along the arc of a circle
when it is outside of this circle (or vice versa inside the circle).
The resulting dynamics in polar coordinates are

ṡi = v̂t,i

ṙi = vr,i

θ̇i = ωi

, (16)

which are fully decoupled. The new control inputs are
(v̂t,i, vr,i, ωi). The radial velocity vr,i is used to keep each
agent on the circle. The rotational velocity ωi is used to control
the orientation of each agent. The tangential velocity v̂t,i is
used in the consensus algorithm.

1) Lateral control: The lateral dynamics of each omnibot
in (16) are given by ṙi = vr,i. As this is a single integrator
system, a proportional feedback controller of the form vr,i =
αi(ri − r∗) is sufficient to stabilize the system and drive ri
asymptotically to the reference r∗.

2) Rotational control: The rotational dynamics of each
omnibot in (16) are given by θ̇i = ωi. This is again a
single integrator system, meaning that a proportional feedback
controller of the form ωi = −βi(θi − θi,ref) is stabilizing
and asymptotically drives the system to the reference orienta-
tion θi,ref .

B. Artificial integration

The dynamics along the path in (16) are given by ṡi = v̂t,i.
This is a 1st-order integrator system, whereas the agents
should be 2nd-order integrators. Therefore, the input signal
(which is acceleration) is numerically integrated to obtain v̂t,i.
This v̂t,i is then applied as the physical velocity of the
omnibot. As the controller is implemented in discrete time
with a finite sampling frequency, the resulting system is very
similar to a second order integrator, but not equivalent. To see
this, consider the discrete time state space of a pure 2nd-order
integrator

s(k + 1) = s(k) + v̂t(k)τ +
1

2
u(k)τ2

v̂t(k + 1) = v̂t(k) + u(k)τ,
(17)

where τ denotes the sampling time. These dynamics are
compared to the discrete time dynamics of the physical system

s(k + 1) = s(k) + v̂t(k)τ

v̂t(k + 1) = v̂t(k) + u(k)τ,
(18)

showing that the update step for s(k + 1) does not directly
take the control input u(k) into account. Instead, it is only
indirectly influenced by u(k − 1) through v̂t(k). The error
of the update step in position of the physical system w.r.t. a
pure integrator is denoted by E(k) = 1

2u(k)τ
2. It is clear that

the error decreases for small control inputs u(k) and a small
sampling time τ . We therefore assume that for sufficiently high
sampling frequencies the agents can be modelled as second
order integrators.

The omnibots have a maximum velocity along the cir-
cle v̂t,max. To account for this, the numerically integrated
velocity v̂t is saturated in software using the clipping operator
by imposing that

s(k + 1) = s(k) + v̂t(k)τ

v̂t(k + 1) = clip(v̂t(k) + u(k)τ ;−v̂t,max, v̂t,max).
(19)

C. Position and velocity measurement

The omnibots are equipped with a deck that emits a signal.
This signal is detected by four lighthouses that compute the
Cartesian position of each omnibot, denoted by (xi, yi, θi).
These Cartesian coordinates are transformed to the polar
coordinates (si, ri, θi). The relative positions are obtained by
taking the difference in travelled distance along the circle. To
make sure that the differences are always in the range [−π, π],
they are computed with the wrapping function as ∆sij =
wrap(si − sj ; r

∗).
The relative velocities are obtained by taking the differ-

ences of the numerical signals v̂t, which are assumed to be
sufficiently similar to the actual velocity. This eliminates the
need for measuring the velocity or designing an observer for
the velocity.

We also wish to remark that, though the lighthouse sys-
tem gives absolute measurements, the controllers only use
the relative positions and velocities. This emulates relative
measurements that could have been obtained with e.g. lidar
measurements had that equipment been available.

D. Trajectory tracking verification

To verify the claim that each omnibot follows the circle and
can be modelled as a second-order integrator, an experiment
is performed where each agent starts with a random initial
position and orientation and a constant tangential velocity
v̂t = 0.1 [m/s]. The radius of the circular path is r∗ = 1 [m].
Both lateral and rotational feedback gains are α = β = 0.5.
The control algorithm operates at a sampling frequency of
2 [Hz]. Figure 6 visualizes the measured vehicle trajectories
in the Cartesian plane, showing that each omnibot indeed
converges towards the circle and follows the path. Figure 7
highlights the lateral tracking performance, showing that the
lateral position r indeed converges to the reference r∗ for all
agents.

Fig. 6. Visualization of agent trajectories to verify the control structure.

Fig. 7. Lateral tracking performance of control structure.

IV. EXPERIMENTATION RESULTS & DISCUSSION

A. Scalable stability for circular graphs

First, an experiment is performed using a circular directed
network with five agents (Figure 8) to verify the scalable
stability. We measure the practical stability bound of the
consensus algorithm (a1,practical) and compare them to the
theoretical bound (a1,theoretical). We run the experiment for
different values of a0 and a1, and we observe whether the
system achieves consensus, giving us the practical stability
bound. For example, Figure 9 shows the measured unstable
response of serial consensus for a certain combination of
feedback gains, since it is observed that the velocities steadily
blow up. Figure 10 shows that the response is stable when
â1 (i.e. the damping) is sufficiently increased, since the states
remain neatly bounded.

1) Conventional consensus: The theoretical stability condi-
tion of conventional consensus in (8) for the circular network
reads a1 > 0.9732

√
a0. This theoretical stability bound is

verified experimentally by measuring the practical stability
bound. Figure 11 visualizes the results of our experiments,
showing that the practical stability bound is more conservative

Fig. 8. Directed circular network

Fig. 9. Measured vehicle trajectories of experiment using serial consensus
with feedback gains â0 = 0.075 and â1 = 0.47. The amplitude of the
oscillation increases, and therefore we conclude that this combination of
(â0, â1) is unstable.

Fig. 10. Measured vehicle trajectories of experiment using serial consensus
with feedback gains â0 = 0.075 and â1 = 0.48. The amplitude of the
oscillation decreases, and therefore we conclude that this combination of
(â0, â1) is stable.

Fig. 11. Visualization of theoretical and practical stability bound of
conventional consensus.

Fig. 12. Visualization of theoretical and practical stability bound of serial
consensus.

in the sense that a higher a1 is required to achieve consensus.

2) Serial consensus: The theoretical stability condition of
serial consensus in (11) reads â1 > 1.6180

√
â0. This theo-

retical stability bound is verified experimentally by measuring
the practical stability bound. Figure 12 visualizes the results,
showing that the practical bound is again more conservative.

3) Discussion: The practical stability bound of both algo-
rithms are more conservative than their theoretical bound, in
the sense that a higher a1 is required to achieve consensus.
This makes sense when we realize that the feedback gains a0
and a1 can be the interpreted as the stiffness and damping of
the system respectively. In practice, a higher damping is re-
quired to guarantee asymptotically stable consensus dynamics.

To visualize how much the unstable region is magnified,
the ratio of the practical stability bound over the theoretical
stability bound a1,practical

a1,theoretical
is visualized in Figure 13. This shows

that the practical stability bound becomes more conservative
for increasing a0 and â0. Furthermore, it shows how the
factor of conventional consensus is generally larger than the
factor of serial consensus. This means that serial consensus
is more robust to practical implementation than conventional
consensus.

Fig. 13. Comparison between theoretical and practical stability bounds, both
for conventional and serial consensus. The figure shows that serial consensus
is more robust to practical implementation.

Fig. 14. Directed linear network

B. String stability for linear graphs

Next, an experiment is performed using a linear directed
network (see Figure 14) to verify the string stability, that is, the
property that disturbances do not propagate and increase along
the string, but remain uniformly bounded. All agents start with
consensus in position and a zero velocity, except the leading
virtual agent. This agent has a constant (non-zero) reference
velocity. Note that our experimentation setup features only
five vehicles. By recording the trajectories of all predecessing
vehicles, the experiments are repeated to artificially increase
the length of the platoon to forty vehicles.

First, we demonstrate that in conventional consensus the
transient error indeed grows exponentially with the number of
agents. We then show that serial consensus is string stable in
the sense that worst case behaviour is bounded, highlighting
its superior scalable performance.

1) Conventional consensus: The results of the conventional
consensus experiment with feedback gains a0 = 0.1 and
a1 = 0.6 are visualized in Figure 15. The leading agent has
a constant velocity of 0.05 [m/s], and the 40 following agents
try to achieve the same velocity while maintaining the inter-
vehicular distance.

The measurement noise of the sensors make it hard to
see the exponential growth of the relative position. However,
we do see the exponential growth in the overshoot of the
following vehicles w.r.t. the leader reference velocity. Every
next following vehicle has a bigger overshoot until the velocity
saturation v̂t,max = 0.18 [m/s] is reached. The behaviour of
conventional consensus indeed scales very poorly.

2) Serial consensus: The results of the serial consensus
experiment with feedback gains â0 = 0.1 and â1 = 0.8 are
visualized in Figure 16. The leading agent has a constant
velocity of 0.10 [m/s], and the 30 following vehicles try to
achieve the same velocity while maintaining the inter-vehicular
distance. The results clearly show that now the relative position

Fig. 15. Trajectories of vehicles in conventional consensus experiment
showing the relative error ep and velocity v̂t. Clearly this behaviour is not
string stable.

Fig. 16. Trajectories of vehicles in serial consensus experiment showing
the relative error ep and velocity v̂t. This behaviour is string stable as the
transient error can be bounded independent of the number of agents.

and overshoot in velocity w.r.t. the leader agent do not grow
unboundedly. Instead, the transient behaviour can be bounded
by the initial maximum deviation according to (7), indepen-
dent of the amount of vehicles in the platoon. This shows
that the behaviour of serial consensus scales favourably. The
experiment was not extended to 40 agents, since the results for
the practical implementation of the serial consensus protocol
supports the theoretical result form [3] that string stability is
achieved despite the length of the platoon.

3) Discussion: Comparing the transient errors between the
two algorithms shows that serial consensus has a superior
scalable performance to conventional consensus. Both relative
position and the overshoot in velocity w.r.t. the leading vehicle
do not grow unboundedly with the number of agents. In
vehicle platooning, this is very important, as bounding the
relative position error avoids vehicle collisions, and bounding
the velocity overshoot ensures we respect the speed limits of
the vehicles.

V. CONCLUSION

For this paper we have implemented a recent scalable
protocol, known as the serial consensus protocol, in a lab
setting with five robots. The implementation of the discretised
protocol was subject to measurement noise. For the serial
consensus protocol, it was mathematically proven in [2, 3] that
it is scalably stable and string stable. In this paper we have
presented experimental verification that these results hold in a

real-life implementation. In parallel, a conventional consensus
protocol was implemented, which was demonstrated to not be
scalably stable and string stable, underlining the superiority of
the serial consensus protocol. Moreover, we have introduced a
relaxation of the serial consensus protocol, and demonstrated
that scalable stability is still satisfied, but that the relaxation
is subject to string instability.

Future directions of research include the practical verifi-
cation of the consensus protocols for higher-order consensus
dynamics, such third-order integrator dynamics. In addition,
the theoretical analysis of the consensus protocols for systems
that feature saturation of their velocity and acceleration could
be performed, since the velocity and acceleration is naturally
limited for real-life vehicles.

ACKNOWLEDGMENTS

The authors would like to thank Jonas Hansson for his
valuable feedback and discussions.

REFERENCES

[1] Serial consensus verification playlist.
https://www.youtube.com/playlist?list=
PLFCGpbpO3e3TsO2fvl4uOkMnRioEAE6 o.

[2] Jonas Hansson and Emma Tegling. A closed-loop design
for scalable high-order consensus. In 2023 62nd IEEE
Conference on Decision and Control (CDC), pages 7388–
7394. IEEE, 2023.

[3] Jonas Hansson and Emma Tegling. Closed-loop design
for scalable performance of vehicular formations. arXiv
preprint arXiv:2402.15208, 2024.

[4] Emily Jensen and Bassam Bamieh. On structured-
closed-loop versus structured-controller design: The case
of relative measurement feedback. arXiv preprint
arXiv:2008.11291, 2020.

[5] Pete Seiler, Aniruddha Pant, and Karl Hedrick. Distur-
bance propagation in vehicle strings. IEEE Transactions
on automatic control, 49(10):1835–1842, 2004.

[6] Sonja Stüdli, Marı́a M Seron, and Richard H Middleton.
Vehicular platoons in cyclic interconnections with constant
inter-vehicle spacing. IFAC-PapersOnLine, 50(1):2511–
2516, 2017.

[7] Darbha Swaroop and J Karl Hedrick. String stability of
interconnected systems. IEEE transactions on automatic
control, 41(3):349–357, 1996.

[8] Emma Tegling, Bassam Bamieh, and Henrik Sandberg.
Scale fragilities in localized consensus dynamics. Auto-
matica, 153:111046, 2023.

https://www.youtube.com/playlist?list=PLFCGpbpO3e3TsO2fvl4uOkMnRioEAE6_o
https://www.youtube.com/playlist?list=PLFCGpbpO3e3TsO2fvl4uOkMnRioEAE6_o

	Introduction
	Preliminaries and theoretical background
	Vehicle model
	Network model and definitions
	Control design
	Scalable stability & string stability
	Conventional consensus
	Serial consensus

	Experimentation setup
	Decoupling control by change of coordinates
	Lateral control
	Rotational control

	Artificial integration
	Position and velocity measurement
	Trajectory tracking verification

	Experimentation results & discussion
	Scalable stability for circular graphs
	Conventional consensus
	Serial consensus
	Discussion

	String stability for linear graphs
	Conventional consensus
	Serial consensus
	Discussion

	Conclusion

