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Abstract—Generating realistic and controllable agent behav-
iors in traffic simulation is crucial for the development of au-
tonomous vehicles. This problem is often formulated as imitation
learning (IL) from real-world driving data by either directly
predicting future trajectories or inferring cost functions with
inverse optimal control. In this paper, we draw a conceptual
connection between IL and diffusion-based generative modeling
and introduce a novel framework Versatile Behavior Diffusion
(VBD) to simulate interactive scenarios with multiple traffic
participants. Our model not only generates scene-consistent
multi-agent interactions but also enables scenario editing through
multi-step guidance and refinement. Experimental evaluations
show that VBD achieves state-of-the-art performance on the
Waymo Sim Agents benchmark. In addition, we illustrate the
versatility of our model by adapting it to various applications.
VBD is capable of producing scenarios conditioning on priors,
integrating with model-based optimization, sampling multi-modal
scene-consistent scenarios by fusing marginal predictions, and
generating safety-critical scenarios when combined with a game-
theoretic solver. Project website: https://sites.google.com/view/
versatile-behavior-diffusion

I. INTRODUCTION

Simulation plays a crucial role in validating the performance
of autonomous driving systems. A primary challenge is
generating diverse, realistic, and interactive traffic behaviors
in a scalable and human-like manner. Conventional model or
rule-based methods [59, 33] are inadequate to deliver realism
and capture human interactions in the real world. Leveraging
readily available driving logs [63, 2, 39], many studies have
turned to data-driven methods and apply imitation learning
(IL) techniques to model more realistic behaviors for traffic
agents [16, 30, 70, 57, 67]. However, these methods mostly
focus on a single agent or employ a shared policy across all
traffic participants, leading to a lack of scene consistency
and causing collisions when deployed in a highly interactive
scenario [7]. To improve consistency, one can formulate
the multi-agent behavior generation as a joint trajectory
optimization problem, and explicitly learn a model to
rationalize traffic interaction. Modeling optimization objective
is a standard inverse optimal control (IOC) or inverse
reinforcement learning (IRL) problem [41, 76]. Strategies
vary from directly training a mapping from scenario to
cost [48, 61, 28], or learning the cost weights for a set
of handcraft heuristics through differentiable optimization
layers [26, 24, 12]. However, these methods struggle to scale
to general scenes or require cumbersome cost function design.

Our objective is to leverage diffusion models (a.k.a
score-based models) [51, 53, 56, 23], a class of generative
modeling methods that gradually recover structured data
from random noise, for traffic scenario generation. Diffusion
models enable effective behavior modeling for multi-agent
joint futures and allow for iterative refinement. A critical
aspect of diffusion models is controllability, which enables
generating scenarios or editing agent behaviors to meet
specific user requirements (e.g., cooperative or adversarial).
Although diffusion models have been increasingly employed
for generating agent behaviors [73, 32, 5, 72, 20, 65], training
and controlling diffusion models for traffic agent interaction
modeling remain challenging, and its connection with the
classic formulation of this task under imitation learning has
been overlooked. Therefore, we aim to bridge the conceptual
gap between scenario generation and diffusion and develop
a practical framework to model scene-consistent interactive
traffic scenarios and enable user-specified behavior generation
through structured guidance.

In this paper, we propose the Versatile Behavior Dif-
fusion (VBD), which utilizes both the map and historical
states of agents as conditional inputs to generate realistic
and controllable traffic scenarios. VBD consists of three main
components. First, we employ a query-centric Transformer-
based [50, 75] scene context encoder, which encodes the
states of agents and map polylines in their local coordinates
and preserves relative information in attention, thus enhancing
the multi-agent modeling performance. Second, we introduce
a Transformer-based denoiser to generate scene-level joint
behaviors of agents from noise. Third, we incorporate a
Transformer-based multi-modal trajectory predictor to forecast
the individual agents’ intentions as behavior priors. While this
predictor is not required for scenario generation, we find it
improves training stability and can be incorporated with the
denoiser to sample diverse scene-consistent scenarios. The
versatility of our model can be realized through directly pre-
dicting scenarios through the denoiser in one step, controllable
sampling of various tasks with user-specific objectives, further
improving the generation quality by fusing the behavior priors,
and generating long-tail safety-critical scenarios with game-
theoretic guidance. The primary contributions of this paper
are summarized as follows:
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Figure 1. Performance of our VBD model on the Waymo Sim Agents task. The multi-agent diffusion policy is capable of controlling a large number of
agents in an interactive and map-adherent manner for traffic simulation.

1) We draw conceptual insights to connect diffusion gen-
erative modeling with the classic imitation learning
formulation of traffic scenario generation.

2) We propose the Versatile Behavior Diffusion model
to facilitate realistic and controllable traffic simulation,
which achieves the state-of-the-art performance of multi-
agent interaction modeling on the Waymo Sim Agents
Benchmark.

3) We demonstrate the versatility of the proposed model
through various guidance methods, including cost func-
tion, goal priors, and game theory structure, to generate
diverse, realistic traffic scenarios within and beyond the
training data distribution.

II. RELATED WORK

Traffic Simulation. There has been a growing shift
towards learning-based methods to enhance the realism and
interactivity of traffic simulations [58]. BITS [66] employs
imitation learning to simulate agent behaviors by inferring
high-level intent and replicating low-level driving actions.
The socially-controllable behavior generation model proposed
in [6] focuses on simulating social and interactive behaviors.
Symphony [30] integrates learning-based policies with
parallel beam search to further enhance realism. Trajeglish
[44] introduces a multi-agent sequence of motion tokens using
a GPT-like encoder-decoder architecture, achieving state-of-
the-art realism. Another line of research focuses on generating
safety-critical or adversarial scenarios to test the robustness

of driving systems. STRIVE [47] generates challenging
scenarios that can induce collisions with the ego planner
through optimization in latent space. Similarly, AdvDO [3]
and KING [21] utilize optimization-based methods to generate
adversarial trajectories for robust planning. TrafficBots [70]
introduces a multi-agent policy conditioned on specific goals
to generate configurable behaviors, though it faces challenges
in goal formation. CAT [68] chooses conflicting trajectories
from the predicted behavior distribution of agents. However,
those methods cannot produce interactions during the safety-
critical scenario, as the trajectory of the agent under attack
are often assumed to be fixed or known to the adversarial
counterpart. Moreover, current simulation models often
lack versatility since they are trained for either maximum
likelihood (realistic) behaviors or adversarial scenarios. We
aim to build a unified framework for both tasks to obtain
realistic and controllable traffic simulation.

Multi-modal Behavior Prediction. Behavior prediction is
closely related to traffic simulation or behavior cloning tasks
[70, 57, 16]. Recent advances in learning-based behavior
prediction models have significantly increased the accuracy of
both agent-wise motion prediction [27, 40, 75] and scene-level
multi-agent joint prediction [38, 50, 25]. Leveraging a large
amount of real-world data, they are capable of generating
accurate multi-modal distributions of possible behaviors for
multiple agents in a scene. In addition, diffusion models



have been applied in behavior prediction and generation
tasks [32, 10, 43], demonstrating superior results in multi-
agent motion prediction. Our proposed model integrates
multi-modal behavior prediction as action priors or feasible
high-level intentions for traffic agents, which aligns with
realistic distributions and can be used in guided diffusion to
generate specific agent behavior.

Diffusion Models. Score-based model, a.k.a Diffusion models
[51, 53, 23, 56, 52], have gained widespread popularity in
various generative tasks, including image [69], audio [34],
and video [14] generation. Recently, diffusion models have
shown great potential in traffic scenario generation due to their
diversity and controllability. SceneDM [20] utilizes a diffusion
model to generate joint and consistent future motions of all
agents in a scene. MotionDiffuser [32] employs a diffusion-
based representation for joint multi-agent motion prediction
and introduces a constrained sampling framework for
controlled trajectory sampling. CTG [73] combines diffusion
modeling and STL rules to enforce traffic rules on generated
trajectories. CTG++ [72] leverages Large Language Models
to translate user queries into loss functions, guiding the
diffusion model toward generating query-compliant scenarios.
TRACE [46] proposes a guided diffusion model to generate
future trajectories for pedestrians, employing analytical loss
functions to impose trajectory constraints. DiffScene [65] and
[5] utilizes guided diffusion with adversarial optimization
objectives to simulate safety-critical scenarios. However,
a conceptual understanding of Diffusion models under
traffic simulation settings has been overlooked in previous
works. We aim to explore the optimal training strategies for
traffic behavior modeling using diffusion model and propose
various sampling strategies, to enhance realism and versatility.

III. PROBLEM FORMULATION

Traffic Scenario Generation as Optimization. Consider a
traffic scenario S = (x,u, c) with episode length T containing
a tensor of A agents’ trajectories x = (x1, . . . ,xA) ∈
RA×T×Dx and control sequences u = (u1, · · · ,uA) ∈
RA×T×Du . The context of the scene c ∈ RDc includes infor-
mation regarding the road map, the status of traffic lights, the
initial joint state of all agents x0, etc. Given an optimization
objective Jθ(x,u; c), we formulate scenario generation as a
finite-horizon optimal control problem by:

min
u∈RA×T×Du

Jθ(x,u; c),

s.t. x0 = x0,

xt+1 = f(xt,ut), ∀t ∈ {0, . . . , T − 1},

(1)

where f represents the discrete-time joint dynamics. If
our goal is to generate realistic (statistically representative)
scenarios, the objective Jθ should be designed to incentivize
real-world driving behaviors, whether through a statistical loss
metric (behavior cloning) or by using inverse reinforcement
learning (IRL). Once Jθ is established, we need to tractably

find an optimal joint control sequence u, either through
numerical optimization or reinforcement learning.

Generative Modeling as Trajectory Optimization. Instead
of solving the aforementioned IL problem in two steps, prior
works [22, 18] have shown a strong connection between
IL and generative modeling under a generative-adversarial
training framework. Extending the analysis of [13, 36, 8], we
show that synthesizing a diffusion generative model in this
IL setting can be viewed as learning the gradient descent step
of a particular optimal control solver.

Consider a dataset D with scenario triplets sampled in-
dependently from an unknown distribution p. Since we are
interested in scenario generation given a scene context and
the recorded trajectory x is a rollout of control u with known
dynamics f , we can factorize the probability density function
as p(S) = p(u|c)p(c). Under Maximum Entropy IRL [76]
formulation, we aim to approximate p(u|c) as the Boltzmann
distribution of an optimization objective:

p(u|c) ≈ pθ(u|c) :=
1

Zθ
exp(−Jθ(x(u),u; c)), (2)

where Zθ is the partition function. Eq. (2) resembles the
Energy-Based Models (EBM) [35, 55]. Specifically, we want
to learn the parameter θ of the optimization objective that
maximizes the conditional log-likelihood of the dataset D:

θ = argmax
θ̂

ES∼D[log pθ̂(u|c)]. (3)

Ideally, we can employ score-matching [29, 60, 53, 54] to
directly learn the gradient of Jθ w.r.t the control (our random
variable of interest) as the score function:

∇u log p(u|c) ≈ sθ(u|c)
:= ∇u log pθ(u|c) (4)

= −∇uJθ(x(u),u; c)−�����:0
∇u logZ.

If ∇uJθ was obtained over the entire action space, we
could use it for gradient descent. However, since the dataset
contains mostly near-optimal scenarios, the gradient estima-
tion in suboptimal regions of the action space (away from
demonstration data) may be inaccurate or not well-defined. To
overcome this issue, a class of approaches [13, 54, 23, 56, 52]
utilize a stochastic process to gradually diffuse p into noised
distributions pk for k steps until it becomes a known dis-
tribution pK = π. These methods are commonly known as
Diffusion models [23, 52] and are later generalized as score-
based models by [56]. Specifically, we train a step-conditioned
score function sθ(ũ|c, k) to approximate the gradient of the
log noised distribution ∇ũ log pk(ũ) by:

θ = argmax
θ̂

ES∼D,k∼U(0,K)Eũ∼pk(·|u)
[

λ(k)∥∇ũ log pk(ũ|u)− sθ̂(ũ|c, k)∥
]
,

(5)

where λ(k) is a positive weighting function. At inference
time, we can generate scenarios by first randomly selecting



ũ from the known distribution π and sampling through the
reverse diffusion process.

Connecting this formulation of generative modeling with
trajectory optimization, we can view the forward diffusion as
uplifting original data distribution into a higher-dimensional
space augmented by diffusion step k. By injecting noise, we
achieve good coverage over the entire action space in the
final step K so that sθ(ũ|c,K) are well defined for random
ũ. Sampling through reverse diffusion can be interpreted as
stochastic gradient descent towards high-probability regions
with a fixed descent direction along the diffusion step,
analogous to the direct shooting method in optimal control.
We note that at low noise level k, as pk is close to the original
data distribution p, sθ(u|c, k → 0) ≈ −∇uJθ(x,u; c), which
is the gradient we originally try to model. Therefore, the
generative modeling of scenarios can be viewed as an explicit
solution of IL by learning the gradient steps of trajectory
optimization and solving the optimal control problem through
reverse diffusion sampling.

In the remainder of the paper, without loss of generality,
we consider a specific form of Diffusion model, diffusion-
denoising probabilistic models (DDPM) [23], which is also
known as the discrete-time variance-preserving score-based
SDE (VP-SDE) [56]. The equivalence between the original
DDPM training objective and the score-matching loss
(Eq. (5)) has been shown in [37].

Controllable and Compositional Generation. In many ap-
plications, we want to generate scenarios that satisfy a specific
user requirement y without retraining the model. For example,
y can be defined as the goal or the reference path for individual
agents, or it can describe a soft constraint, such as obeying
the speed limit or avoiding collisions. From the perspective
of optimal control (Eq. (1)), we modify the optimization
objective to: Jθ(x,u; c) + Jy(x,u; c). Plugging into the
EBM representation, we obtain a new conditional distribution:
p(u|c, y) ∝ p(u|c)p(y|u, c), where p(u|c) is the data dis-
tribution we approximated through generative modeling and
p(y|u, c) is the likelihood of y. This immediately resembles
the compositionality in EBM [13] and Classifier Guidance in
diffusion model [11]. Specifically, we can sample the reverse
process with a conditional score function:

∇ũ log pk(ũ|c, y) ≈ sθ(ũ|c, y, k)
= sθ(ũ|c, k) +∇ũ log pk(y|ũ, c),

(6)

where pk(y|ũ, c) is the likelihood of y given the noised
action ũ at step k. It is important to note that pk(y|ũ, c) is
not equivalent to the likelihood of y in the data distribution
p(y|u, c), therefore it is typically required to train a separate
model [11, 31]. Prior works [73, 72, 32] proposed practical
approximation to the gradient of noised likelihood with
the gradient of Jy for guidance, which enables flexible
composition and controllability with additional objective
without training. We analyze these guidance methods in

Section IV.

IV. VERSATILE BEHAVIOR DIFFUSION MODEL

Model Structure. The Versatile Behavior Diffusion model
consists of three main components as illustrated in Fig. 2.
The scene encoder Eϕ : c 7→ ĉ encodes the scene context
c into its latent representation ĉ using query-centric attention
Transformers [50]. Leveraging rich scene context information
from encoder, the denoiser Dθ : (ĉ, ũ, k) 7→ û directly predict
a joint control sequence û from ĉ and noised control ũ at
step k. This allows our model to perform one-step generation,
while still maintaining the capability of iterative sampling
and refinement. The behavior predictor Pψ : (ĉ, {ζi}Mi=1) 7→
{CatM (ûa, ω̂a)}Aa=1 predicts an M -mode marginal categorical
trajectory distribution of each agent from ĉ with the help of a
set of representative static end-point anchors {ζi}Mi=1 extracted
from data [50]. All three modules utilize a stack of query-
centric self-attention and cross-attention blocks for flexibility
and scalability. Details regarding the model architecture can
be found in the supplementary materials.
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Figure 2. Overview of the proposed VBD model. The input scenario tokens
are encoded through a query-centric Transformer-based scenario encoder. The
behavior predictor generates marginal multi-modal trajectories. The denoiser
predicts the joint multi-agent future trajectories while attending to themselves
and the condition tokens. During inference, the predicted behavior priors or
user-defined model-based objectives J can be used to guide the denoising
process to generate desired scenarios.

Model Training. We implement a multi-task learning frame-
work that concurrently trains the encoder, denoiser, and pre-
dictor components of our model. To train the denoiser, we aim
to minimize the denoising loss:

LDθ =ES∼p,k∼U(0,K)Eũ∼pk(·|u)
[

λ(k)SL1(x̂(Dθ(ĉ, ũ, k))− x)
]
,

(7)

which is defined as the the Smooth L1 loss between ground-
truth trajectories x and the trajectories x̂ rollout from û.

Training a denoiser with the scene encoder directly can be
unstable, partially because the denoiser focuses on structured
data from the noisy trajectories rather than the information
from context encoding. To address this issue, we suggest
incorporating an additional task in the model to predict multi-
modal trajectories, which can more effectively attend to the



context encoding. This setting not only stabilizes training and
enhances the overall learning performance but also provides
behavior priors for individual agents. To train the behavior
predictor Pψ , we first select the mode m∗ that most closely
matches the ground truth trajectory of each agent and minimize
the predictor loss defined as:

LPψ = ES∼p

[
A∑
a=1

SL1

(
x̂(ûa,m

∗
)− xa

)
+βCE(m∗, ω̂a)

]
,

(8)

which penalizes the smooth L1 difference between the ground
truth trajectory of each agent and the trajectory from the best
mode m∗, and encourages a higher probability to be assigned
on this mode through a Cross-Entropy loss.

Scenario Generation with VBD. To employ the VBD model
for scenario generation or behavior modeling, we can use the
following implementations.

• One-step generation. We directly query the denoiser with
a randomly sampled noised ũ. Since the encoder provides
rich scene context information, we empirically find one-
step generation can sample high-quality joint scenarios.
However, due to strong conditioning on the scene context,
one-step sampling often collapses to a single mode of
scenario.

• Multi-step sampling. To improve sample diversity, we
utilize a standard DDPM sampling approach by iteratively
querying the denoiser and updating the noised ũ.

• Guided Sampling. To impose constraints or targets
on specific agents, we use the classifier guidance
method [11] by alternatively updating the noised ũ
with denoiser output and ∇ũ log pk(y|ũ, c). We evaluate
two approaches for approximation: 1. CTG [73, 72]
directly approximates log pk(y|ũ, c) ≈ log p(y|ũ, c) =
−Jy(x(ũ), ũ; c); 2. MotionDiffuser (MD) [32]
approximates log pk(y|ũ, c) ≈ Jy(x(Dθ(ũ)),Dθ(ũ); c),
where Dθ(ũ) is the one-step generation result from
denoiser.

Diverse Scene-consistent Scenario Generation. Sampling
diverse outputs from a conditional diffusion model is
challenging, especially when the denoising strongly relies on
the context information [49]. On the other hand, behavior
predictors capture the multi-modal trajectories of individual
agents but will result in scene inconsistency if marginal
trajectories are naively combined, because the predictor
alone cannot ensure the collective coherence necessary for
realistic multi-agent scenario generation. VBD can used as
an effective scenario optimizer and produce diverse and
scene-consistent scenarios by first sampling goal positions
from the behavior predictor (or any other models) and
generating joint trajectories matching individual goals using
guided sampling with the denoiser.

Game-theoretic Safety-critical Scenario Generation. It is
essential to expose AVs to a variety of simulated safety-critical
scenarios to stress-test and improve their planning ability. To
generate interactive safety-critical scenarios, we model the
two-agent interaction as a map-constrained pursuit-evasion
game, where the pursuer aims to cause a collision with the
evader, while the evader attempts to avoid it. One approach
to solving such a game is iterative best response (IBR),
such as gradient descent–ascent (GDA). Specifically, we can
apply τ -GDA to guarantee local convergence to a stable
minimax equilibrium of the pursuit-evasion game [17]. We
update the pursuer more frequently than the evader, providing
information advantage to the adversarial agents.

Generating a scenario with a game-theoretic solver alone
often leads to unrealistic results that disregard the scene
context. Instead, leveraging realistic traffic behavior modeled
by VBD, we propose a game-guided diffusion scheme (??) by
alternative denoising, performing gradient descent and ascent
for agents, and updating the noised ũ until convergence. In
addition, we can further enhance the realism of the scenario
with optional gradient masks Me and Mp, which allow us to
adjust the adversity of the pursuer and the responsiveness of
the evader by only performing gradient updates on selected
timesteps.

V. EXPERIMENTS

Platform. We conduct the experiments on the large-scale
Waymo Open Motion Dataset (WOMD) [15], which includes
486,995 9-second logged real-world scenarios for training
and 44,097 scenarios for validation. The dataset provides
tracks of all agents and corresponding vectorized maps in
each scenario. We employ the Waymax simulator [19] as the
interface for closed-loop traffic simulation. In the Waymo Sim
Agents benchmark [39], we evaluate our model on 44,920
testing scenarios. To improve closed-loop rollout performance
and stability [4], trajectories are replanned in the receding
horizon fashion.

Implementation Details. During training, we consider
A = 32 agents, 256 map polylines (each containing 30
waypoints), and 16 traffic lights in the scene. VBD generates
T = 80 steps of future control sequences with step size
0.1s based on (up to) 11 steps of past trajectories. The
scene encoder contains 6 query-centric-attention Transformer
layers, and the embedding dimension is 256. The behavior
predictor comprises 4 cross-attention Transformer layers and
generates M = 64 possible trajectories for each agent along
with respective probability estimates. The denoiser includes
two decoding blocks with a total of 4 Transformer layers. A
cosine variance schedule is adopted in the diffusion process,
employing K = 10 diffusion steps, and the maximum value
of β(k) is set to 0.999. The predicted raw actions are
standardized during the diffusion process, with the mean and
standard deviation of actions set to 0 and 1. The scalability of



Table I
TESTING RESULTS ON THE 2024 WAYMO SIM AGENTS BENCHMARK

Model Realism Meta (↑) Kinematic (↑) Interactive (↑) Map-based (↑) minADE (↓)

SMART[64] 0.7511 0.4445 0.8050 0.8571 1.5447
BehaviorGPT[74] 0.7473 0.4333 0.7997 0.8593 1.4147
MVTE[62] 0.7302 0.4503 0.7706 0.8381 1.6770
TrafficBotsV1.5[71] 0.6988 0.4304 0.7114 0.8360 1.8825

VBD (Ours) 0.7200 0.4169 0.7819 0.8137 1.4743

Table II
VBD IMPROVES SCENE-CONSISTENCY FROM MARGINAL BEHAVIOR PRIORS

Method Collision [%] ↓ Off-road [%] ↓ Wrong-way [%] ↓ Kin. [%] ↓ ADE [m] ↓

Marginal Prediction Only 5.61±0.27 6.19±0.05 0.86±0.09 0.31±0.02 1.113±0.012
Post-Optimization via Denoiser 2.23±0.15 1.26±0.10 0.52±0.11 0.32±0.01 0.974±0.005
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Figure 3. VBD produces scene-consistent traffic scenarios when certain agents are conditioned on a given prior. Top: Nominal VBD rollout without guidance
generates a scene-consistent scenario, where Vehicle 5 (in purple) waits at the stop sign and then precedes. Bottom: Using goal-guided diffusion to minimize
Vehicle 5’s final position w.r.t to a given goal, we enforce Vehicle 5 to run the stop sign. VBD model generates a scene-consistent scenario with Vehicle 1
yielding to Vehicle 5.

Table III
COST-GUIDED SAMPLING IMPROVES GENERATION QUALITY

Method Collision [%] ↓ Off-road [%] ↓ Wrong-way [%] ↓ Kin. [%] ↓ ADE [m]

VBD 2.47±0.09 1.21±0.14 0.57±0.02 0.24±0.01 1.010±0.007
VBD + Collision (CTG) 1.67±0.58 1.51±0.18 0.86±0.08 0.25±0.01 1.711±0.020
VBD + Collision (MD) 1.11±0.23 1.15±0.17 0.60±0.12 0.25±0.01 1.113±0.010

Transformer blocks allows VBD to be adapted to any number
of agents during inference.

Evaluation Metrics. We follow the official evaluation
metrics of Waymo Sim Agents benchmark [39] encompassing
kinematic, interactive, and map-based features, and a
meta realism metric is calculated as a weighted sum of
these features. For the assessment of controllable scenario
generation, we utilize a subset of 500 WOMD interactive
validation scenarios selected by prior work [68]. We employ

metrics provided by the Waymax simulator [19], such
as off-road incidents, collisions, wrong-way, kinematic
infeasibility, and average displacement error (ADE) of the
rollout trajectories w.r.t the ground-truth ones (log divergence).

Results on Sim Agents Benchmark. The Waymo Sim
Agents benchmark requires 32 independent rollouts of
simulation from one scenario, and each rollout contains the
x/y/z coordinates and headings for up to 128 agents over
an 8-second future horizon. We evaluate the performance of



Agent 0 Agent 1 Other Agent Speed [m/s]

Figure 4. Composition of denoiser model-based objective can improve generation quality. Two vehicles interact and coordinate in a narrow passage scenario
with collision cost function guidance. (Note: Vehicles 3 and 5 have been in collision since the initial step.)

Avoider Adversarial Pursuer Other Agent Speed [m/s]

Figure 5. Results of game theoretical guided generation. Top: The adversarial pursuer merges in front of the evader, performs a brake check, and attempts
to cause a rear-end crash. The evader immediately switches its lane and avoids the collision. Bottom: The adversarial pursuer merges aggressively to the
adjacent lane, and the evader yields to the pursuer by slowing down.

scenario generation from VBD’s joint diffusion policy by
initiating the denoising process sampling from unit Gaussian
noise. As summarized in Table I, we demonstrate that the
behavior generation performance from VBD closely matches
state-of-the-art models. We present a selection of qualitative
simulation results in Fig. 1, showcasing the model’s ability
to generate diverse and realistic traffic scenarios. Further
analysis suggests VBD is capable of facilitating realistic agent
interactions through its joint multi-agent diffusion policy.

Denosing as Scene-consistent Scenario Optimization. In
this experiment, we evaluate the effectiveness of VBD as
a scenario optimization tool to generate scene-consistent
interactions from marginal behavior priors. Specifically, the
baseline (marginal) method directly samples actions from
the behavior predictor in a receding horizon fashion with
the replan frequency as 1 Hz. For each agent in the scene,
we select the final positions of agents’ most likely predicted
trajectories as the goal prior and apply guided sampling

to minimize the mean L2 distance between the denoised
results and goals. We compare their performance with 500
scenarios of the WOMD interactive subset and test each
method with three different random seeds. The average L2
distance between the goals and rollout trajectories is 2.1833
m, which shows VBD can reach goal points better than
marginal samples. The results in Table II indicate VBD
significantly reduces the collision rate and our model better
captures interactions between agents. Moreover, under the
circumstance when priors were selected from suboptimal
samples, e.g. off-road or wrong-way, VBD can alleviate these
cases and generate scenarios that adhere to scene context.

Additionally, we find that VBD is capable of generating
interactive conditional predictions, when there is only one
or a subset of agents are conditioned by marginal priors.
Here, a human user supervises the simulation process and
manually selects the target agent and its target goal. As seen
in Fig. 3, by conditioning on the behavior that vehicle 5
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Figure 6. VBD with game-theoretic guidance can generate reactive and long-tail safety-critical scenarios. Top: The adversarial pursuer suddenly pulls out
and causes a rear-end crash with the evader. Bottom: Stochastic sampling allows us to generate diverse safety-critical behaviors. The pursuer forces the green
vehicle to drive to the opposite side of the road while causing a collision.

makes a left turn ignoring the stop sign, VBD’s diffusion
policy can generate a scenario such that vehicle 1 is forced
to yield for the other vehicle. On the other hand, the nominal
diffusion policy rollout without any guidance follows a
completely different but still scene-consistent traffic ordering.
Such behaviors can be observed in a variety of scenes, and
additional examples can be found in the Supplementary
Materials.

Improving Generation Quality via Composition with
Model-Based Objectives. The performance of VBD can
be further improved when combined with a model-based
optimization objective. In this experiment, we introduce a
simple collision avoidance cost to maximize each agent’s
minimum distance from others along the horizon. We compare
the performance of different guidance methods including CTG
guidance [73] and MotionDiffuser (MD) guidance [32]. As
shown in Table III, this simple objective further reduces the
collision rate. We observe that under the same cost, CTG has
worse performance. One explanation is that noised ũ sampled
from u with low Jy may have high costs, and assuming
the pk is equivalent to the data distribution p in CTG could
lead to incorrect gradient at high noise level. The qualitative
results in Fig. 4 also illustrate that, by composing with a
model-based optimization objective, the model can generate
collision-free interaction in the challenging narrow-passage
scene.

Reactive Safety-critical Scenario Generation. As illustrated
in Fig. 5 and Fig. 6, our model is capable of generating
safety-critical scenarios with the proposed game-theoretic
guided sampling framework in various scenes. Distinct

from previous works [47, 5, 68], which sample adversarial
behaviors given fixed trajectories of vehicles being pursued,
our guidance strategy actively optimizes the actions of
both the purser and evader and leads to highly-interactive
scenarios. Our proposed method facilitates the generation of
highly realistic scenarios, especially with regard to adversarial
behavior, by ensuring it remains proportionately adversarial
and responsive to the ego vehicle’s actions. This strategy
overcomes the shortcomings of previous methods, which tend
to generate unrealistically aggressive adversarial tactics and
are less useful in stress-testing AVs. Detailed formulations
can be found in the Supplementary Materials.

VI. CONCLUSIONS

In this paper, we introduce a scene-consistent scenario
optimizer leveraging the diffusion model, called Versatile Be-
havior Diffusion. This model integrates a denoiser for diffusion
inference, which accounts for the joint futures of all agents,
as well as a behavior predictor that provides the prior distri-
bution of the agents’ multi-modal trajectories. The experiment
results demonstrate that our model is capable of generating
diverse, realistic, and interactive scenarios, achieving state-of-
the-art performance on the Waymo Sim Agents benchmark.
Moreover, we show the model’s versatility in various tasks
employing different structured guidance strategies, such as
model-based optimization objectives, prior-based scene editing
or conditional generation, and game-theoretical guidance for
crafting safety-critical scenarios. Future research could aim to
enhance the model’s runtime efficiency and apply it to AV
planning tests.
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Supplementary Material
APPENDIX

A. System Dynamics

The diffusion model operates in the action space, and we
assume that there is a dynamic function that can translate
actions to physical states xt+1 = f(xt,ut). A unicycle
dynamics function is utilized to transform agent actions into
states, which is adopted to approximate the dynamics of all
agent types, including vehicles, pedestrians, and cyclists. The
current state of an agent is defined by its global coordinates
(x, y), yaw angle ψ, and velocities vx, vy . Given the action
of an agent, including acceleration v̇ and yaw rate ψ̇, and the
time length for one step ∆t, the next-step state of the agent is
calculated using the following forward dynamics f , expressed
as:

x(t+ 1) = xt + vx(t)∆t,

y(t+ 1) = yt + vy(t)∆t,

ψ(t+ 1) = ψ(t) + ψ̇∆t,

v(t+ 1) =
√
vx(t)2 + vy(t)2 + v̇∆t,

vx(t+ 1) = v(t+ 1) cosψ(t+ 1),

vy(t+ 1) = v(t+ 1) sinψ(t+ 1).

(S1)

Since each operation in the dynamics function is differentiable,
it can be integrated as a layer in the network to convert
predicted actions into states.
Furthermore, we employ the inverse dynamics function f−1 to
calculate actions from ground-truth states, which is formulated
as:

v̇(t) =
v(t+ 1)− v(t)

∆t
, v(t) =

√
vx(t)2 + vy(t)2,

ψ̇(t) =
ψ(t+ 1)− ψ(t)

∆t
.

(S2)

B. Model Structure

Scene Encoder. The encoder processes three main inputs:
the agent history tensor ([A, Th, Da]), the map polyline tensor
([Ml,Mp,Dp]), and the traffic lights tensor ([Mt,Dt]). Here,
Th denotes the number of historical steps, Ml the number
of polylines, Mp the number of waypoints per polyline, Mt
the number of traffic lights, and Ml +Mt = M represents
the combined count of map elements. The feature sizes for
agents, polylines, and traffic lights are represented by Da, Dp,
and Dt, respectively. The agent history tensor records each
agent’s historical state, including x, y coordinates, heading
angle (ψ), velocities (vx, vy), and bounding box dimensions
(l, w, h), along with the agent type. Each map polyline,
comprising Mp = 30 waypoints, includes attributes like x, y
coordinates, direction angle, the traffic light state controlling
the lane, and lane type. The traffic lights tensor encompasses
the x, y coordinates of stop points and the state of each traffic
light. Before encoding, positional attributes of all elements
are converted into their local coordinate systems; for agents,
the reference point is their last recorded state, and for map

polylines, it is the location of the first waypoint. We choose
A = 32 agents, Th = 11 historical steps, Ml = 256 map
polylines, and Mt = 16 traffic lights.
We first encode the agent history tensor, utilizing a shared
GRU network to produce a tensor of shape [A,D], which
is then combined with the agent type embedding. For map
polylines, an MLP is employed for encoding, resulting in a
tensor of shape [Ml,Mp,D]. This is followed by max-pooling
along the waypoint axis to produce a tensor of shape [Ml,D].
For traffic lights, we only encode their light status using an
MLP, yielding a tensor of shape [Mt,D]. These tensors are
then concatenated to form the initial scene encoding tensor
with shape [A+M,D]. The initial scene encoding is further
processed using query-centric Transformer layers to symmet-
rically encode the interrelationships among scene components.
In this approach, each scene element is translated into its local
coordinate system and encoded with query-centric features,
and the relative position of each pair of scene elements is
calculated and encoded as edge attributes. For example, for el-
ements i and j, the relative position ∆ij = [∆x,∆y,∆heading]
is computed and then encoded into the edge attribute using an
MLP, resulting in relation encoding tensor eij =MLP (∆ij).
The query-centric attention mechanism for a query element qi

operates as follows:

QCA(Qi,K, V, e) = softmax
( qi√

D
[{kj

+eij}j∈Ω(j)]
T
)
({vj + eij}j∈Ω(j)),

(S3)

where kj ,vj represent the key and value elements
respectively, each containing relevant element-centric
information, and j ∈ Ω(j) indicates the index of other tokens.
Other standard operations in Transformers, such as multi-head
attention, feed-forward networks, and layer normalization,
remain unchanged. In practice, batch operations can be
applied to implement the multi-head query-centric attention
mechanism efficiently. The encoder consists of 6 query-centric
Transformer layers to process the initial scene encoding, the
embedding dimension D = 256, and the final output tensor
retains the same shape as [A+M,D].

Denoiser. The denoiser part processes three types of input:
noised actions ([A, Tf , 2]) derived from the ground-truth state
and action trajectories, the noise level, and the scene encoding
tensor. Each agent’s action at every timestep a = [v̇, ψ̇]T

consists of acceleration and yaw rate, while the state comprises
coordinates, heading, and velocity (x, y, ψ, v). Here, actions
are reduced to a shorter length Tf from T , by replicating
the same action over multiple timesteps, denoted as Ta. The
noise level is encoded via an embedding layer to a tensor of
shape [1, 1, D]. Noised actions are converted into noisy states
using a forward dynamics model and subsequently encoded
into a tensor of shape [A, Tf , D] using an MLP. The encoded
noisy states are combined with the noise level embedding
and a temporal embedding ([1, Tf , D]) to create the initial
trajectory embedding. For the denoising process, two decoding



blocks, each comprising two Transformer decoder layers, are
applied to predict clean actions. Within the decoding block,
a self-attention Transformer module is employed to model
the joint distribution of future plans across agents. To main-
tain closed-loop rollout causality, a causal relationship mask
[24] is used in the self-attention module, which ensures that
information from future timesteps cannot be utilized at the
current timestep. Furthermore, a cross-attention Transformer
module is used to model the scene-conditional distribution, by
relating the noisy trajectories to the encoded scene conditions.
Since the elements are encoded in a query-centric manner,
the decoding layers still require relative positional information
between elements, which can be obtained from the encoder.
Following the Transformer decoding stage, the resulting
trajectory embedding is fed into an MLP to decode the clean
actions tensor of shape [A, Tf , 2]. Subsequently, clean states
([A, T, 3], encompassing x, y, ψ) are deduced from these
predicted actions using a differentiable dynamics model.
In this work, we choose T = 80 and Ta = 2, resulting
in Tf = 40 and thus significantly reducing computational
demands while maintaining high accuracy.

Behavior predictor. The behavior predictor generates the
marginal distributions of possible behaviors for agents by
directly decoding from the encoded scene conditions. To accu-
rately predict the probabilities of possible goals, the predictor
takes as input the static anchors for agents in local coordinates
with shape [A,Mo, 2] as the modality query inputs. The
anchors contain Mo = 64 typical x, y coordinates at T = 80
extracted from data using the K-means algorithm, and vary
across different agent types such as vehicles, pedestrians, and
cyclists. We utilize an MLP encoder to encode these anchors
into a tensor of shape [A,Mo, 256]. This encoding is then
combined with the agent encoding of shape [A, 1, 256], to form
an initial query tensor with dimensions [A,Mo, 256]. Then we
employ four cross-attention Transformer layers where relative
relation encoding is still used in the attention mechanism.
The predictor iteratively refines its predictions through several
decoding layers and finally, an MLP decoding head is added to
decode the possible action sequences for all agents, resulting
in a tensor of [A,Mo, Tf , 2]. These action trajectories are
transformed into state trajectories of shape [A,Mo, T, 4] using
the same differentiable dynamics model, and each waypoint in
the trajectory contains the state (x, y, ψ, v). Another MLP layer
decodes the embedding after the Transformer layers to derive
marginal scores (probabilities) of these predicted trajectories,
with shape [A,Mo].

C. Model Training

Predictor. The training of the predictor follows the multi-
trajectory-prediction (MTP) loss setting. This involves select-
ing the best-predicted trajectories and computing the loss
relative to the ground-truth trajectories. To determine the
best-predicted indices for an agent, the following criterion is

applied:

m∗ =

{
argmini ||aci − xT ||, if xT is valid,
argmini ||

∑
t(x̂

i
t − xt)||, otherwise,

(S4)

where aci is the static anchor point, xt is the ground-truth
point of the trajectory, and x̂it is the predicted trajectory
point. This means that if the ground-truth trajectory endpoint
is invalid, the predicted trajectory with the smallest average
displacement error is selected; otherwise, the trajectory corre-
sponding to the closest anchor point is selected.
Subsequently, trajectories are chosen from the multi-modal
predictions based on the indices m∗, and the Smooth L1
loss is computed between these selected trajectories and
the ground-truth trajectories. For the training of the scoring
head, cross-entropy loss is utilized, comparing the predicted
logits with the given indices. Note that this loss function is
computed marginally, and time steps lacking ground-truth
data or invalid agents are excluded from the loss calculation.

Denoiser. The denoiser is trained to recover the clean
trajectories under various noise levels. At each training
step, noise level k and Gaussian noise ϵ are sampled and
applied to corrupt the ground-truth trajectories. The denoiser
is optimized to predict the denoised trajectories from the
corrupted trajectories. Since the model predicts scene-level
joint trajectories, all agent trajectories are affected by the
same noise level. The training procedure of the denoiser is
described in Algorithm 1.

Model. The total loss function for the multi-task learning
model is formulated as:

L = LDθ + γLPψ , (S5)

where γ is a hyperparameter to balance the importance of
tasks.
The hyperparameters used in the total loss function is γ = 0.5,
and β = 0.05 is used in the predictor loss. The model is trained
using an AdamW optimizer with a weight decay of 0.01. The
initial learning rate is set at 0.0002 and decays by 0.02 every
1, 000 training steps, and a linear warm-up is employed for the
first 1, 000 steps. The total number of epochs for training is 16.
Gradient clipping is implemented with a norm limit set to 1.0.
The training of the model utilizes BFloat16 Mixed precision
and is executed on four NVIDIA A100 GPUs, with a batch
size of 14 per GPU.
The guided diffusion algorithm using a score function is
illustrated in Algorithm 2. In practice, multiple gradient
steps are employed to more effectively perturb the predicted
means. The score function Jy varies with the structure y,
which can be defined as the goal for individual agents or a
soft constraint, such as obeying the speed limit or avoiding
collisions.



Algorithm 1 Training of denoiser
Require: Denoiser Dθ, dataset D, denoising steps K, dynam-

ics function f , inverse dynamics function f−1

1: for each training iteration do
2: x, c ∼ D ▷ Sample from dataset
3: Get action trajectory: u = f−1(x)
4: k ∼ U(0,K), ϵ ∼ N (0, I) ▷ Sample noise level and

Gaussian noise
5: Add noise to ground-truth: ũk =

√
ᾱku+

√
1− ᾱkϵ

6: Predict denoised trajectory: û = Dθ(ũk, k, c, f), x̂ =
f(û)

7: Compute loss: LDθ = SL1(x̂− x) ▷ Use smooth L1
loss

8: Update denoiser parameters θ
9: end for

Algorithm 2 Guided diffusion with score function
Require: Denoiser Dθ, score function Jy , diffusion steps K,

gradient steps Ng , scaling parameter α, standard deviation
σk

1: ũK ∼ N (0, I) ▷ Sample initial trajectory
2: for k ← K to 1 do
3: û← Dθ(ũk, k, c) ▷ Predict denoised control

sequence
4: µ̃k ←

√
αk(1−ᾱk−1)

1−ᾱk ũk +
√
ᾱk−1βk
1−ᾱk û ▷ Calculate

unguided posterior µ̃k
5: for i← 1 to Ng do
6: µ̃k ← µ̃k + ασk∇µ̃kJy(Dθ(µ̃k)) ▷ Guidance

gradient step
7: end for
8: ũk−1 ∼ N (µ̃k, σ

2
kI) ▷ Sample previous-step noised

control sequence
9: end for

10: Return: Final control sequence u← ũ0

D. Prior Guidance

Consider a scenario where we need to specify desired
behaviors for Na agents. We can utilize the predicted behavior
priors from the VBD model to heuristically determine the
target behaviors or goals for each target agent, represented
by {gi}i=1:Na . Without sophisticated cost and feature design,
the score function based on behavior priors is significantly
simplified as follows:

Jgoal = −
∑

i=1:Na

SL1(g
i − xiT ), (S6)

where SL1 denotes the Smooth L1 loss, xiT is the state of
an agent derived from actions using a differentiable dynamic
function, and T is the planning horizon. The other agents in
the scene will not be directly influenced by the guidance.

E. Cost Guidance

Another form of guidance is differentiable cost functions,
which can be used to further improve the generation quality,
such as collision avoidance and staying on-road. The formula-
tion of these cost functions is outlined as follows. Specifically,
the collision avoidance cost function is formulated as:

Joverlap =
T∑
t=1

A∑
i,j

dij(xt)1(dij(xt) < ϵd), (S7)

where dij represents the Minkowski distance between the
footrpints of agents i and j at time t. The parameter ϵd
is the threshold for defining potential collision. The on-road
guidance function is designed to prevent agents from straying
off drivable roads. The on-road cost function is formulated as:

Jonroad = −
T∑
t=1

A∑
i

relu
(
dr(x

i
t)
)
, (S8)

where dr denotes the signed distance between the bounding
box of an agent and the nearest road edge. A negative
distance indicates that the agent’s position is on the road,
while a positive distance suggests off-road. It is important
to note that this cost is applied only to vehicles that are not
off-road at the initial step.

F. Sim Agents

We evaluate the performance of both diffusion policy and
behavior predictor in the Waymo Sim Agents benchmark. The
testing of the behavior prediction model employs an open-
loop planner, which means that the model directly generates 8-
second multi-agent trajectories and these trajectories are rolled
out in the Waymax simulator. Although this setting violates the
closed-loop testing protocol of the Sim Agents benchmark, it
serves as a useful indicator of our model’s ability to accurately
generate behavior distributions for multiple agents. For the
diffusion policy, we directly roll out the policy’s output in
the simulator without replanning, primarily due to time con-
straints, as the benchmark requires testing in a large number
of scenarios. It is important to note that despite the absence
of replanning, the diffusion policy adheres to the benchmark’s
closed-loop protocol, because of the incorporation of a causal
relationship mask in the attention-based decoding process.
The decoding of an agent’s state at a given timestep relies
only on the static map and the states of other agents in
preceding timesteps, without any sharing of information about
their future intentions.
During testing, we only let the policy/model control the first
32 agents in the scene, while the remaining agents follow a
constant velocity policy. For the evaluation of behavior priors,
the model first generates marginal behavior distributions for
the agents. Subsequently, we sample 32 times from these
distributions to obtain 32 different scenario rollouts. For the
diffusion policy, a batch of Gaussian noise is directly sampled,
allowing the generation of 32 varied scenarios simultaneously,
thereby expediting the sampling process.



The results in Table S2 indicate that both the diffusion policy
and behavior prediction perform very well. Notably, the joint
diffusion policy outperforms the marginal behavior prediction
model in terms of interactive score, which highlights the
advantage of the diffusion policy for joint behavior modeling.
These findings suggest that our VBD model is reliable at
generating accurate marginal behavior priors for agents and
can facilitate realistic agent interactions through its joint multi-
agent diffusion policy.

G. Evaluation Metrics

In addition to the Sim Agents benchmark evaluation metrics,
we employ the following metrics provided by the Waymax
simulation platform for the controllable traffic scenario gener-
ation testing.
Off-road. A binary metric indicates if a vehicle drives off
the road, based on its position relative to oriented roadgraph
points. If a vehicle is on the left side of an oriented road
edge, it is considered on the road; otherwise, the vehicle is
considered off-road. This metric is averaged over all valid
agents in the scene.
Collision. A binary metric identifies whether an agent has
collided with another agent. For each pair of objects, if their
2D bounding boxes overlap in the same timestep, they are
considered as collision. This metric is computed as an average
across all valid agents in the scene.
Wrong-way. A binary metric that measures whether a vehicle
deviates from its intended driving direction. A wrong-way
movement is flagged if the vehicle’s heading angle deviates
more than 90 degrees from its closest lane direction for a
duration exceeding 1 second. The calculation of this metric is
an average across all valid agents in the scene.
Kinematic infeasibility. A binary metric that computes
whether a transition step is kinematically feasible for the
vehicle. The limit of acceleration magnitude is empirically set
to be 6 m/s2 and the steering curvature magnitude to be 0.3
m−1. The metric is averaged for all valid agents in the scene.
Log divergence. This metric quantifies deviation from logged
behavior using the average displacement error (ADE), defined
as the L2 distance between an agent’s current and logged
positions at each timestep. The metric is averaged across all
timesteps and all valid agents in the scene.

H. Guided Scenario Generation

For the guided diffusion testing, we employ Ng = 5
gradient steps and set the strength parameter α = 0.1,
and guidance is applied throughout all diffusion steps. We
limit the simulation to a maximum of 32 agents to manage
computational resources, and any additional agents present in
the original scenarios, mostly static vehicles, are excluded. The
experiments are conducted on selected 500 9-second scenarios
from the WOMD validation interactive subset. The simulation
starts at 1 second and extends over a horizon of 8 seconds,
and the simulation model’s replanning frequency is 1 Hz. We
show additional results on guided scenario generation in video
format.

I. Reactive Simulation

The primary requirement of simulation is to ensure that the
agents respond realistically to the actions of the ego vehicle.
To assess our model’s performance, we conduct reactivity
tests where the ego vehicle is decoupled from the VBD
model and is instead controlled by another planner. We test
the reactivity of our model across 500 scenarios where the
labeled self-driving car (SDC) is controlled by a log-playback
planner or an IDM-route planner. In this experiment, only the
historical movements of the SDC are provided to the model,
and thus the VBD model does not control the ego vehicle
but rather coordinates the behaviors of the remaining agents.
The results are presented in Table S3, which indicate that
the reactivity of the diffusion policy is superior compared to
marginal behavior prediction or behavior cloning method, as
evidenced by a significant reduction in ego vehicle collisions.
Employing an IDM-route planner, which may not mimic
human-like driving and deviate substantially from the actual
trajectory, results in poorer performance. Conversely, using
a log-playback planner with better human likeness enables
our VBD model to generate reactive behaviors to the ego
vehicle. Visualizations of the reactive simulation outcomes
with the log-playback planner are available in video format
at https://sites.google.com/view/versatile-behavior-diffusion.

J. Safety-critical Scenario Generation

Using the VBD model with the proposed game guidance
or unsafe prior guidance, we demonstrate additional results
of safety-critical scenario generation in video format at https:
//sites.google.com/view/versatile-behavior-diffusion.

K. Ablation Studies

We investigate the factors that influence the training of the
diffusion policy, focusing on the number of diffusion steps
and the integration of a prior predictor in a multi-task learning
framework. We train the denoiser under various settings and
test the performance of the learned policy across identical
testing scenarios. For the evaluation of diffusion steps, we
only train the denoiser with a frozen the encoder. The results
are presented in Table S4, where we found increasing number
of diffusion steps does not imply better generation metrics.
One explanation is that, since scenario generation is heavily
conditioned on scene contexts, the initial denoising steps can
already generate reasonable results. When sampled without
guidance, extensive steps may inject excessive randomness and
lead to undesirable behaviors, such as collision and off-road.

In addition, we also studied the effectiveness of auxiliary
marginal prediction in Table S5. We found that the inclusion
of marginal predictor in the joint training significantly improve
the training of the encoder, and leading to better generation
results with the denoiser.
The results suggest that increasing the number of diffusion
steps has a negative effect on simulation performance. This
is likely because, different from image generation, behavior
generation is strongly conditioned on the scene context, which
means that small variance gaps between steps are not necessary

https://sites.google.com/view/versatile-behavior-diffusion
https://sites.google.com/view/versatile-behavior-diffusion
https://sites.google.com/view/versatile-behavior-diffusion


Table S1
TESTING RESULTS ON THE 2023 WAYMO SIM AGENTS BENCHMARK

Method Realism Meta Kinematic Interactive Map-based minADE (m)

VBD (Ours) 0.6342 0.4212 0.7256 0.8200 1.3509

Trajeglish [44] 0.6437 0.4157 0.7646 0.8104 1.6146
MVTA [62] 0.6361 0.4175 0.7390 0.8139 1.8698
MTR+++ [45] 0.6077 0.3597 0.7172 0.8151 1.6817
SceneDM [20] 0.5821 0.4244 0.6675 0.7000 2.4186
CAD [9] 0.5314 0.3357 0.5638 0.7688 2.3146
Joint-Multipath++[39] 0.4766 0.1792 0.6322 0.6833 2.0517

Table S2
TESTING RESULTS OF THE VBD MODEL ON THE WAYMO SIM AGENTS BENCHMARK

Method Realism Meta Kinematic Interactive Map-based minADE

VBD-Diffusion 0.6342 0.4212 0.7256 0.8200 1.3509
VBD-BP 0.6315 0.4261 0.7177 0.8216 1.3400

Table S3
TESTING RESULTS OF THE VBD MODEL ON REACTIVE SIMULATION

Model Ego planner Collision w/ ego [%] Off-road [%] Log divergence [m]

BP Log-playback 10.60 4.49 0.979
BP IDM-route 13.20 5.38 1.070
Diffusion Log-playback 4.80 1.43 1.082
Diffusion IDM-route 8.40 2.26 1.107

Table S4
ABLATION RESULTS ON THE DIFFUSION POLICY

Diffusion Collision [%] ↓ Off-road [%]↓ Wrong-way [%] ↓ ADE [m] Guidance
Collision [%]

step=1 1.95±0.03 1.24±0.02 0.67±0.03 0.823±0.002 –
step=5 2.18±0.16 1.23±0.04 0.64±0.06 0.961±0.004 1.30
step=10 2.47±0.09 1.21±0.14 0.57±0.02 1.010±0.007 1.11
step=25 2.68±0.15 1.52±0.06 0.64±0.09 1.061±0.010 1.27
step=50 3.60±0.45 1.67±0.17 0.67±0.01 1.123±0.012 1.51
step=100 3.68±0.63 1.81±0.24 0.69±0.05 1.163±0.011 1.50

for refining predictions. Moreover, adding more diffusion steps
can introduce excessive randomness into the sampling process,
leading to a decrease in behavior modeling performance. The
result indicates that using 10 steps of diffusion can balance the
performance of normal and guided sampling, which can also
significantly improve the inference speed. Regarding the effect
of the behavior predictor, the result reveals that it benefits the
diffusion policy by improving the learning of the encoder part
of the model.

L. Connection Between Score-based Model and Optimization

In this subsection, we provide an extended analysis to
show that one interpretation of score-based or diffusion-based
generative model under imitation learning setting is learning
the gradient descent step of a particular optimal control solver
based on previous results from [13, 36, 8].
Consider a dataset D with scenario triplets S := (x,u, c)
sampled independently from an unknown distribution p, whose
probability density function can be factorized the as p(S) =
p(u|c)p(c). In particular, we are interested in modeling the

conditional probability p(u|c) of the joint control sequence u
w.r.tthe scene context c by pθ(u|c), from which we can sample
(high probability) u and implement realistic trajectories x with
known dynamics f .
Under Maximum Entropy IRL [76] formulation, pθ(u|c) can
be structured as the Boltzmann distribution of an optimization
objective:

p(u|c) ≈ pθ(u|c) :=
1

Zθ
exp(−Jθ(x(u),u; c)), (S9)

where Zθ is the partition function (normalizing factor).
Eq. (S9) resembles the Energy-Based Models (EBM), which
can be trained through the estimation of maximum likelihood
[35, 55].

Corollary 0.1. The maximum likelihood estimation of θ can
be obtained by maximizing conditional log-likelihood of the
dataset D:

θ = argmax
θ̂

ES∼D[log pθ̂(u|c)]. (S10)



Table S5
ABLATION RESULTS ON THE EFFECTIVENESS OF AUXILIARY PREDICTION TASK

Diffusion Collision [%] ↓ Off-road [%]↓ Wrong-way [%] ↓ ADE [m] Guidance
Collision [%]

w. Predictor 2.47±0.09 1.21±0.14 0.57±0.02 1.010±0.007 1.11

w/o predictor 3.01±0.14 1.96±0.09 0.90±0.10 1.218±0.007 1.41

Proof: Assuming we want to model the unknown data
distribution p by pθ,ϕ(S) = pθ(x,u|c)pϕ(c). To estimate both
θ and ϕ, we can maximize the log-likelihood as:

max
θ̂,ϕ̂

ES∼D[log pθ̂,ϕ̂] = max
θ̂,ϕ̂

ES∼D[log pθ̂(x,u|c) + log pϕ̂(c)]

= max
θ̂,ϕ̂

ES∼D[log pθ̂(x,u|c)] + max
θ̂,ϕ̂

ES∼D[log pϕ̂(c)]

= max
θ̂

ES∼D[log pθ̂(x,u|c)] + max
ϕ̂

ES∼D[log pϕ̂(c)]

Therefore, we can separate the problem and learn the parame-
ter θ of conditional distribution via maximizing log-likelihood
independent of learning pϕ(c).

Ideally, we can train a score function sθ(u|c) by score-
matching [29, 60, 53, 54] to approximate the gradient of
log p(u|c) w.r.tthe control sequence (our random variable of
interest):

∇u log p(u|c) ≈ sθ(u|c) := ∇u log pθ(u|c)

= −∇uJθ(x(u),u; c)−�����:0
∇u logZ.

(S11)

With the score function, ∇uJθ is naturally obtained and can
be directly used for gradient descent. However, since the
dataset contains mostly near-optimal scenarios, the gradient
estimation in suboptimal regions of the action space (away
from demonstration data) may be inaccurate. Given a context
c, if we initialize an arbitrary u far away from the minimizer
of J , errors in the score function may lead to suboptimal
generation. To overcome this issue, we follow [56] to diffuse
the control u through a forward stochastic differential equation
(SDE):

dũ = h(ũ, k)dk + g(k)dw, (S12)

where w is the wiener process and k ∈ [0,K] is the
continuous diffusion step. This process allows p to gradually
transform into noised distributions pk until it becomes a known
distribution pK = π. While the probability density function of
pk is unknown, we can sample a noised control ũ ∼ pk by
first sampling u ∼ p and perturbing with pk(ũ|u) through
SDE. This allows us to train a step-conditioned score function
sθ(ũ|c, k) to approximate ∇ũ log pk(ũ) by:

θ = argmax
θ̂

ES∼p,k∼U(0,K)Eũ∼pk(·|u)[

λ(k)∥∇ũ log pk(ũ|u)− sθ̂(ũ|c, k)∥],
(S13)

where λ(k) is a positive weighting function. At inference time,
we can generate scenarios by first sampling ũ from the known

distribution π and iterating through the reverse SDE [1]:

dũ =
[
h(ũ, k)− g2(k)sθ(ũ|c, k)

]
dk + g(k)dw̄. (S14)

To connect the score-based model with IRL and EBM, we
can view the forward diffusion as uplifting original data dis-
tribution into a higher-dimensional space. By injecting noise,
we achieve good coverage over the entire action space in the
final step K so that sθ(ũ|c,K) are well defined for random ũ.
Sampling through reverse SDE can be interpreted as stochastic
gradient descent towards high-probability regions with a fixed
descent direction along the diffusion step, analogous to the
direct shooting method in optimal control. We note that at low
noise level k, as pk is close to the original data distribution p,
sθ(u|c, k) ≈ −∇uJθ(x,u; c), which recovers our learning
objective. Therefore, the generative modeling of scenarios
can be viewed as an implicit solution of IRL by learning
the gradient steps of trajectory optimization and solving the
optimal control problem through sampling.

M. DDPM: Denoising Diffusion Probabilistic Model
One popular method that uses the idea of learning reverse

diffusion process to construct data is the Diffusion Denoising
Probabilistic Model (DDPM) [23]. The discrete-time formu-
lation of the forward diffusion process of DDPM can be
described as [42]:

q(ũ1, · · · , ũK |u) :=
K∏
k=1

q(ũk|ũk−1), (S15)

q(ũk|ũk−1) := N
(
ũk;

√
1− βkũk−1, βkI

)
, (S16)

where βk ∈ (0, 1) is the k-th noise scale from a predefined
noise scheduling, u is the clean action sampled from data
distribution, and ũk is the noisy action samples at diffusion
step k. In the final step K, the data distribution approaches
an isotropic Gaussian distribution q(ũK) ≈ N (ũK ; 0, I). Let
αk = 1 − βk and ᾱk =

∏k
i=0 αi, we can directly sample ũi

from data u without iterative diffusion via reparameterization
trick:

ũk =
√
αkũk−1 +

√
1− αkϵk−1

=
√
ᾱku+

√
1− ᾱkϵ, ϵ ∼ N (0, I).

(S17)

The generation process is accomplished by learning to reverse
the forward diffusion process based on context information c.
The reverse diffusion process starts with an isotropic Gaussian
noise q(ũK) and can be expressed as follows:

pθ(ũ0, · · · , ũK |c) := q(ũK)

K∏
i=1

pθ(ũk−1|ũk, c), (S18)



pθ(ũk−1|ũk, c) := N
(
ũk−1;µθ(ũk,Dθ(ũk, k, c)), σ2

kI
)
,

(S19)
where µθ calculates the posterior mean of the noise at k − 1
step from ũk and DDPM denoiser output Dθ(·), and σk is the
standard deviation according to the fixed noise schedule.
Specifically, the denoiser Dθ(·) estimates the clean action
trajectory sample ûk from the current noisy sample ũk,
according to which the mean of the previous noisy sample
ũk−1 can be derived as follows:

µk :=

√
ᾱk−1βk
1− ᾱk

ûk +

√
αk(1− ᾱk−1)

1− ᾱk
ũk, (S20)

A cosine schedule is employed for ᾱk, which is formulated
as:

ᾱk =
fn(k)

fn(0)
, fn(k) = cos

(
k/K + s

1 + s
· π
2

)2

, (S21)

where K is the total number of diffusion steps, and s = 0.008
is a small offset to prevent βk from being too small near
k = 0. The variances βk are calculated as βk = 1 − ᾱk

ᾱk−1
,

with a maximum value capped at 0.999. Once the variance
schedule is established, the values of αk, βk, and ᾱk can be
calculated.

In the reverse diffusion process, it is often necessary to incor-
porate constraints or objectives to guide the process towards
desired outcomes, denoted as y. This guidance is implemented
by subtly altering the predicted mean of the model at each
denoising step, similar to the CTG method [73]. Therefore,
the denoising step is modified to impose guidance in the form
of a score function Jy as:

µ̃k = µk + ασk∇µkJy(µk), (S22)

where α is a parameter that controls the strength of the
guidance.
However, calculating the gradient based on the mean of noisy
actions is difficult and inaccurate, and thus manipulating the
noise mean using the noisy gradient can result in errors and
instability. To address this, we propose an alternative approach
similar to the MotionDiffuser method [32]: calculating the
objective function using the one-step generation result from
denoiser rather than the noisy mean. This modification is
expressed as:

µ̃k = µk + ασk∇ũkJy(Dθ(ũk)), (S23)

where the gradient ∇ũk is calculated with respect to the noisy
actions ũk and necessitates differentiation through the denoiser
D.

N. Connecting DDPM with Score-Based Model

In previous subsections, we consider a general form of score-
based model with continuous-time SDE proposed by Song

et al.[56]. To draw the connection, DDPM is a discrete-time
variance-preserving SDE (VP-SDE) with

f(k, x) = −1

2
β(k), g(k) =

√
β(k). (S24)

whose proof is stated in Appendix B. of [56]. i-th diffusion
step in DDPM can be viewed as discrete sampling along
continuous time step k.
To train the denoiser, Ho et al.[23] used a simplified loss to
minimize difference between sampled noise ϵ the predicted
noise ϵθ(·) from the denoiser by:

LDDPM = Ei∼[1,N ],S∼D,ϵ∼N

[
∥ϵ− ϵθ(ũi, i, c)∥2

]
= Ei∼[1,N ],S∼D,ϵ∼N

[
∥ϵ− ϵθ(

√
ᾱiu+

√
1− ᾱiϵ, i, c)∥2

]
.

(S25)

The equivalence between the DDPM loss function (Eq. (S25))
and score-function loss (Eq. (S13)) has also shown in Section
3.2 [37] with:

∇ũipi(ũi|c) = −
1√

1− ᾱi
ϵ, s(ũi|c, i) = −

1√
1− ᾱi

ϵθ(ũi, c, i).

(S26)
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