Learning Lane Graphs from Aerial Imagery Using Transformers

Martin Büchner*, Simon Dorer*, and Abhinav Valada

University of Freiburg * Equal contribution

Motivation

Results

Ablation Study on UrbanLaneGraph – Palo Alto Split

Variant	TOPO P/R	GEO P/R	APLS	SDA ₂₀	SDA ₅₀	Graph IoU	→	
Path Representation								(
Bézier	0.395/0.339	0.567/0.527	0.619	0.191	0.405	0.290		
Dolulino		A 620/A 501	<u> </u>	0 251	0 470	0 2 2 0		

Polyline representations outperform Bézier curves by a large margin.

universität freiburg

Path Predictions

Successor Lane Graph

- How can we leverage transformers for aerial lane graph prediction?
- What are effective image encoding backbones?
- What is the most suitable path parametrization for set-level lane graph prediction?

Method

Lane Graph Representation

 Following MapTR [1], we represent successor lane graphs as maximal-length paths to enable set-level predictions.

 We parametrize traversal paths as standard polylines consisting of straight segments or Bézier curves using 10-20 control points.

Polyline	0.479/0.420	0.639/0.594	0.664	0.251	0.479	0.338	→	Sagmontation backbones
Backbone							_	such as PSPNet are most
ResNet-50 ViT-B-16 PSPNet <u>PSPNet + ResNet-50</u>	0.268/0.223 0.253/0.212 0.479/ 0.420 0.485 /0.414	0.433/0.396 0.418/0.383 0.639/ 0.594 0.644 /0.587	0.509 0.465 0.664 0.665	0.158 0.114 0.251 0.237	0.367 0.348 0.479 0.447	0.200 0.195 0.338 0.345	-	suitable for lane graph prediction from aerial imagery.
Architecture								Detection beel/beness such as
$(1, 1, 64, 10) \\ (2, 2, 128, 20) \\ (4, 4, 128, 10)$	0.432/0.353 0.474/0.402 0.479/0.420	0.598/0.536 0.631/0.575 0.639/0.594	0.643 0.651 0.664	0.193 0.223 0.251	0.344 0.420 0.479	0.304 0.331 0.338	>	ViT or ResNet do not yield significant performance gains.

Comparison against LaneGNN on UrbanLaneGraph (Palo Alto)

MethodTOPO P/RGEO P/RAPLSSDA20SDA50Graph IoULaneGNN0.584/0.7440.582/0.7390.1770.2200.3670.378ALGT0.481/0.4370.645/0.6060.7140.2240.4970.343

- ALGT shows competitive performance on the ULG benchmark when comparing against LaneGNN.
- The ALGT model vastly outperforms LaneGNN on the APLS and SDA metrics. Nonetheless, the topological accuracy of LaneGNN [2] is higher.
- Our approach does not suffer from inaccurate node positions and resolves the limitation of sampled node manifolds.

Aerial Lane Graph Transformer (ALGT)

- As proposed in the UrbanLaneGraph [2] dataset we take aerial crops including context and embed them using various image feature encoders.
- We add fixed two-dimensional sinusoidal positional encodings, flatten the feature maps and feed them to a transformer encoder.
- Based on set of fixed-size vector path queries the transformer decoder produces proposal vectors representing lane graph paths. Thus we do not utilize any positional encoding within the decoder.
- We regress path probabilities and associated control points using MLPs.

Failure Cases

- Topological errors mostly stem from missing entire paths.
- Similar to previous findings [2], inferring intersection rules from aerial views remains hard.

 Training: We minimize a composite loss consisting of the MSE of the Hungarian matching objective between predicted and GT paths using the Manhattan distance and the predicted path probability:

$$\mathcal{L} = \alpha \cdot \sum_{Y_i \in Y} \mathcal{L}_{mse}(Y_i, \hat{Y}_{\sigma^*(i)}) + \beta \cdot \mathcal{L}_{bce}$$

 Aggregation: We disregard paths not meeting a certain minimum likelihood threshold. The remaining paths are fused based on Euclidean node-to-node merging to obtain cohesive successor lane graphs.

Conclusion

- We presented a novel successor lane graph prediction approach that generates highly accurate paths while not suffering from node initialization errors.
- Polyline path representations seem to outperform Bézier parametrizations.
- Future work could address the learned temporal aggregation of transformerbased predictions as well as the out-of-distribution problem inherent to largescale lane graph prediction.

References

[1] Liao et al., "MapTR: Structured Modeling and Learning for Online Vectorized HD Map Construction," ICLR, 2023.

[2] Buechner et al., "Learning and Aggregating Lane Graphs for Urban Automated Driving," CVPR, 2023.