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Motivation Results

= Ablation Study on UrbanLaneGraph — Palo Alto Split

Variant TOPO P/R GEO P/R APLS SDAy SDAsy Graph IoUu 2 Polyline representations
Path Representation outperform Bezier curves by a
;U Bézier 0.395/0.339 0.567/0.527 0.619 0.191 0.405 0.290 Iarge margin.
% Polyline 0.479/0.420 0.639/0.594 0.664 0.251 0.479 0.338 .
23 — > Segmentation backbones
= acone such as PSPNet are most
s ResNet-50 0.268/0.223 0.433/0.396 0.509 0.158 0.367 0.200 i
ViT-B-16 0.253/0.212 0.418/0.383 0.465 0.114 0.348 0.195 SUIta.bI.e for lane graph
PSPNet 0.479/0.420 0.639/0.594 0.664 0251 0479  0.338 prediction from aerial
PSPNet + ResNet-50 | 0.485/0.414 0.644/0.587 0.665 0.237 0.447  0.345 imagery.
0 Architecture D _ hackb n
>
. g (1,1,64,10) 0.432/0.353 0.598/0.536 0.643 0.193 0.344 0.304 gtectlon ackbones S_UC as
Path Predictions Successor Lane Graph (2,2,128, 20) 0.474/0.402 0.631/0.575 0.651 0223 0420  0.331 VIT or ResNet do not yield
(4,4,128,10) 0.479/0.420 0.639/0.594 0.664 0.251 0.479 0.338 Significant performance gains_

= How can we leverage transformers for aerial lane graph prediction?

= What are effective image encoding backbones?

= Comparison against LaneGNN on UrbanLaneGraph (Palo Alto)
= What is the most suitable path parametrization for set-level lane graph

prediction? Method | TOPO P/R GEO P/R APLS SDA,;, SDAsy Graph IoU

LaneGNN | 0.584/0.744 0.582/0.739 0.177 0.220 0.367 0.378
ALGT 0.481/0.437 0.645/0.606 0.714 0.224 0.497 0.343

> ALGT shows competitive performance on the ULG benchmark when

MethOd comparing against LaneGNN.

> The ALGT model vastly outperforms LaneGNN on the APLS and SDA
metrics. Nonetheless, the topological accuracy of LaneGNN [2] is higher.

Lane Graph Representation

> Qur approach does not suffer from inaccurate node positions and resolves
the limitation of sampled node manifolds.

* Following MapTR [1], we represent successor lane graphs \
as maximal-length paths to enable set-level predictions.

= We parametrize traversal paths as standard polylines consisting K
of straight segments or Bézier curves using 10-20 control points. I

Aerial Lane Graph Transformer (ALGT)

= As proposed in the UrbanLaneGraph [2] dataset we take aerial crops including
context and embed them using various image feature encoders.

> Topological errors
mostly stem from

= We add fixed two-dimensional sinusoidal positional encodings, flatten the missing entire paths.

feature maps and feed them to a transformer encoder. _.
g > Similar to previous
findings [2], inferring
intersection rules
from aerial views
remains hard.

= Based on set of fixed-size vector path queries the transformer decoder
produces proposal vectors representing lane graph paths. Thus we do not
utilize any positional encoding within the decoder.

= We regress path probabilities and associated control points using MLPs.
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= We presented a novel successor lane graph prediction approach that generates
highly accurate paths while not suffering from node initialization errors.
= Training: We minimize a composite loss consisting of the MSE of the Hungarian " Polyline path representations seem to outperform Bezier parametrizations.

matching objective between predicted and GT paths using the Manhattan
distance and the predicted path probability:

L=a Y Lpnse(Yi,Yoi))+ B Loce

Y;eY

= Future work could address the learned temporal aggregation of transformer-
based predictions as well as the out-of-distribution problem inherent to large-
scale lane graph prediction.
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