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Introduction

To address the issue of simultaneously tracking trajectories
and drifting while accounting for mismatches in the vehicle
model, we propose a two-layer model predictive controller
based on sparse Gaussian strategies.

Our Contributions

® A Two-Layer Model Predictive Controller (TMPC) has
been proposed, which shows a 43% improvement in tracking
performance compared to three state-of-the-art drift
controllers when tracking trajectories with varying curvature.

® The sparse variational Gaussian process model is introduced
to learn the model error, which reduces the average lateral
error by 72% under model mismatch conditions.
Additionally, it shows twice the tracking performance of
FITC-based MPC and is ten times faster in computation
time compared to fully GP-based MPC [1].

Sparse Gaussian Strategies
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The critical slip angle and steering angle are used as indicators to distinguish between
transit drifting and deep drifting.
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Two local sparse Gaussian models are established according to the indicators. The green line
is the transit drifting, and the blue is the deep drifting.
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Compensate for the equilibrium calculation error and the low-level controller model error.

Yaw Rate Compensation

*  Realdata
= Predictive mean trans
= Predictive mean deep

Ay if o, | > o

Reference

[1] Hewing L, Kabzan J, Zeilinger M N. Cautious model predictive control using gaussian process regression[J]. IEEE Transactions on Control Systems Technology, 2019, 28(6): 2736-2743.
[2] Goh J Y, Goel T, Christian Gerdes J. Toward automated vehicle control beyond the stability limits: drifting along a general path{J]. Journal of Dynamic Systems, Measurement, and Control, 2020,
142(2): 021004.

[3] Dong H, Yu H, Xi J. Real-time model predictive control for simultaneous drift and trajectory tracking of
Intelligence (CVCI). IEEE, 2022: 1-6.

[4] Chen G, Zhao X, Gao Z, et al. Dynamic drifting control for general path tracking of

ehicles[C]//2022 6th CAA Conference on Vehicular Control and

hicles[J]. IEEE Ti

on Intelligent Vehicles, 2023, 8(3): 2527-2537.

Architecture Description

XY, W
e Tracking MPC
r
ﬂr'ﬂ/ . . a2 Transition Sparse
Equilibrium Point 4 gaussian process
Calculation
. . . e » dVFE A A
Ve, gl e, 8 F, Drift State Analysis
V.B.r Learning based S, a, d! Deep Sparse
MPC v gaussian process
5 F
I V.,.p.r,o,F

Comparison with State-of-the-Art Drift Controllers

Our approach is compared against three state-of-the-art drift controllers: 1) the unconstrained
nonlinear controller MARTY [2], 2) the MPC controller DDTC [3], which simultaneously manages
both drifting and trajectory tracking, 3) the MPC-HDDC controller [4], which combines nonlinear
mapping with MPC based on the MARTY framework.
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The green car represents HDDC, the blue car represents DDTC, the yellow car represents
TMPC (ours), and the purple car represents MARTY.

Controller Avg. e(m) Avg. e Reduction (%) Max. e(m) Computation time(ms)
MARTY 0.9598 54.78 1.9221 0.6759
MPC-HDDC 0.7679 43.49 1.8092 3.2329
DDTC 0.8888 51.14 1.6743 2.7649
TMPC (Ours) 0.4342 - 1.5481 9.2895

The table indicates that by decoupling the drifting and tracking problems, the TMPC(ours)
achieved a 55%, 43%, and 51% reduction in average lateral error compared to MARTY,
MPC-HDDC, and DDTC, respectively, demonstrating better trajectory tracking capability.

Conclusion
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Two-layer model predictive controller structure: The upper layer calculates the drift
equilibrium point for trajectory tracking, while the lower layer tracks the setpoint to
maintain the drift. Based on whether the vehicle has entered a deep drift state, different
local Gaussians are selected for error compensations.

Comparison with GP-based MPC

We introduced a 2% loss in the friction coefficient to compare the model error learning
capabilities of VFE GP-based MPC(Ours), FITC GP-based MPC, and full GP-based MPC.
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FITC GP-based MPC suffers from
underfitting due to prediction variance
estimation. Full GP-based MPC shows
good prediction in some learning laps
but overfits towards the end. VFE-
based MPC demonstrates good
prediction accuracy and is ten times
faster in computation time compared
to the full GP. Two VFE GP-based
MPC performs best, as it has more
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Heration

Decoupling drift and trajectory tracking in a two-layer MPC framework effectively balances both objectives. The VFE-based MPC demonstrates superior tracking and learning capabilities compared to the
FITC-based MPC. Furthermore, the prediction accuracy can be improved by categorizing drift into transit drift and deep drift and establishing corresponding sparse Gaussian models.



