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To address the issue of simultaneously tracking trajectories

and drifting while accounting for mismatches in the vehicle

model, we propose a two-layer model predictive controller

based on sparse Gaussian strategies.

Sparse Gaussian Strategies

Architecture DescriptionIntroduction

Comparison with State-of-the-Art Drift Controllers

Our Contributions

⚫ A Two-Layer Model Predictive Controller (TMPC) has

been proposed, which shows a 43% improvement in tracking

performance compared to three state-of-the-art drift

controllers when tracking trajectories with varying curvature.

⚫ The sparse variational Gaussian process model is introduced

to learn the model error, which reduces the average lateral

error by 72% under model mismatch conditions.

Additionally, it shows twice the tracking performance of

FITC-based MPC and is ten times faster in computation

time compared to fully GP-based MPC [1].
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The critical slip angle and steering angle are used as indicators to distinguish between 

transit drifting  and deep drifting.

Two local sparse Gaussian models are established according to the indicators. The green line 

is the transit drifting, and the blue is the deep drifting.

Compensate for the equilibrium calculation error and the low-level controller model error.

Two-layer model predictive controller structure: The upper layer calculates the drift

equilibrium point for trajectory tracking, while the lower layer tracks the setpoint to

maintain the drift. Based on whether the vehicle has entered a deep drift state, different

local Gaussians are selected for error compensations.

Comparison with GP-based MPC

Full GP-based MPC Overfit.

FTIC GP based MPC Underfit. TWO VFE GP-based MPC(Ours).

VFE GP-based MPC(Ours).

FITC GP-based MPC suffers from

underfitting due to prediction variance

estimation. Full GP-based MPC shows

good prediction in some learning laps

but overfits towards the end. VFE-

based MPC demonstrates good

prediction accuracy and is ten times

faster in computation time compared

to the full GP. Two VFE GP-based

MPC performs best, as it has more

knowledge about when the car

enters deep drifting.

After learning five laps, the tracking

performance of the Two VFE GP-

based MPC (yellow color) is the best,

as shown in the boxplot.

The green car represents HDDC, the blue car represents DDTC, the yellow car represents

TMPC (ours), and the purple car represents MARTY.

Our approach is compared against three state-of-the-art drift controllers: 1) the unconstrained

nonlinear controller MARTY [2], 2) the MPC controller DDTC [3], which simultaneously manages

both drifting and trajectory tracking, 3) the MPC-HDDC controller [4], which combines nonlinear

mapping with MPC based on the MARTY framework.

The table indicates that by decoupling the drifting and tracking problems, the TMPC(ours)

achieved a 55%, 43%, and 51% reduction in average lateral error compared to MARTY,

MPC-HDDC, and DDTC, respectively, demonstrating better trajectory tracking capability.

We introduced a 2% loss in the friction coefficient to compare the model error learning

capabilities of VFE GP-based MPC(Ours), FITC GP-based MPC, and full GP-based MPC.

Conclusion

Decoupling drift and trajectory tracking in a two-layer MPC framework effectively balances both objectives. The VFE-based MPC demonstrates superior tracking and learning capabilities compared to the 

FITC-based MPC. Furthermore, the prediction accuracy can be improved by categorizing drift into transit drift and deep drift and establishing corresponding sparse Gaussian models.
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