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Autonomous Driving
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i ey Time: Unlock the hundreds of
Humen error is invotved in billions of hours spent driving

940/0 1 hour each day / American driver
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43K annual US fatalities, a leading
cause of death of young people

Environment: Mitigate
environmental harms

Transportation is the largest
contributing sector of greenhouse
gas emissions in the US at 29%,
mostly on roadways
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Autonomous Vehicles for Lagrangian Tratfic Control

Fixed Location-based Actuators AVs as Mobile Actuators

I-24 highway traffic smoothing (Lichtle et al. 2023)
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Autonomous Vehicles for Lagrangian Tratfic Control

AVs as Mobile Actuators

Cooperative multi-agent control problem

Mixed traffic control problem (AVs and human-driven
vehicles co-exist)

Goal: Fleet-level traffic flow optimization

I-24 highway traffic smoothing (Lichtle et al. 2023)
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Generalization Challenge

Factors of variation: Topology, turn restrictions, road grade, weather, travel demand, vehicle types,
age, etc.
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Generalization Challenge

Factors of variation: Topology, turn restrictions, road grade, weather, travel demand, vehicle types,

age , etc.

4-way intersection
H: 1 lane L
V: 1 lane
w/o turns

4-way intersection
H: 1 lane

V: 4 lanes

w/ turns

ICRA2024

YOKOHAMA | JAPAN

i 4-way '”terSecn ion. - ﬁ‘d
3 K{’g H: 3 lanes_- e
0 IH \ (,.- V: 3 lans g“ a\ \Z
fahd s
= o
o“oH'}‘. o dS g ac‘
(a\\‘I—e W
ASTT‘: th :}

Ff’i.. &gg.;*; 2

ﬁ
S
i

o we

N o T RS ¥ ’
LR e it
[" e :
0..‘» (

3-way intersection “’;
H: 1 lane
V: 1 lane
w/ turns




Contributions

— Formalize generalization in Lagrangian traffic control as a Contextual Markov
—/  Decision Process (cMDP).

E'ﬁ Propose Multi-residual Task Learning (MRTL) as a framework to solve the
—7 resultant cMDP.

—  Show the utility of MRTL in a demonstrative cooperative eco-driving application.

V2I Communication/
Cloud sync control through car following dynamics

G o o O o

leading guided vehicle following human-driven vehicles

D

I @ RA 2 o 2 4 V2V Communication/

Onboard sensors
YOKOHAMA | JAPAN



Contextual Markov Decision Process (cMDP)

Markov Decision Process (MDP) Contextual Markov Decision Process (cMDP)

McMDP — (S’ A' C' Pec Tc’ re )/)

C: Context space

M= (S5A4.pT,r,y)
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Contextual Markov Decision Process (cMDP)

Contextual Markov Decision Process (cMDP)

McMDP — (S' A' C' Pec Tc' re ]/)

C: Context space

H
7 = argmax E[ z Z vir (s, at)| so5, ]
T

ceC t=0
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Multi-residual Task Learning (MRTL)

-
P ="
- ,

(s, c) S -

Can be solved with
multi-task learning

Learning residual actions

(s, c) = +  fo(s,0)
Multi-residual Residual policy
Task Learning policy action
action
(superposition) (Initial suboptimal (corrective residual
action) action)
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Generalizing Cooperative Eco-driving

Objective: Leverage AVs as Lagrangian actuators to improve fleet-level emission of a mixed traffic fleet.

MRTL outperform baselines MRTL can overcome nominal MRTL is robust to control and
policy limitations bias noise

Emission benefits over 1200 traffic t-sne visualization of intersection benefits
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The multi-residual task learning (MRTL) framework offers a promising approach
for solving contextual markov decision processes.

Application of MRTL to cooperative eco-driving yields significant emission benefits,
indicating greater generalization across traffic scenarios.

For questions and comments, please reach me at vindula@mit.edu
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