Generalizing Cooperative Eco-driving via Multi-residual Task Learning
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Emission reduction across 1200 traffic scenarios in 600 signalized intersections
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 We seek to find policy i that solve a given cMDP by solving the
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Motivation ﬂ/(fS" C) T[Tl(S’ C) fe (S’ C)  Emission reduction without reducing intersection throughput (lower the percentage the better).
 Real-world autonomous driving contends with a multitude of diverse \
traffic scenarios \ Method (against IDM) 20% eco-driving adoption 100% eco-driving adoption
| | | MRTL policy Nominal policy | | Residual function MTL 64.08% 95.86%
 While model-free deep reinforcement learning (DRL) can be used to ; .
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learn vehicle controllers, it is still challenging to learn controllers that The gradient of the ™ does not depend on the m,,. This enables
generalize to multiple traffic scenarios. flexibility with nominal policv choice. MRTL (Ours) -13.95% -29.09%
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* In addressing this challenge, we introduce Multi-residual Task * Intuition: If the nominal pg"cy t-SNE visualization of emission benefits of MRTL policy in mitigating nominal policy limitations
Learning (MRTL), a generic learning framework based on multi-task pol.lcy 's nearly perfect, the N * Each dot represents a signalized intersection approach, and the colors indicate the emission benefit levels.
learning that, for a set of task scenarios, decomposes the control residual term can be TnO—@ ™ . The higher the emission benefits, the better the results.
into nominal components that are effectively solved by viewed as a corrective Multi-task .... ---* Multi-
conventional control methods and residual terms that are learned term. If not, nominal policy [ learning ' ,a residual Nominal policy L SRR Ea. !20 60 !20 150
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* We apply MRTL to cooperative multi-agent eco-driving at T e e B A - 150 100 =50 0 50 100
 Formally, consider a contextual Markov Decision Process (cMDP) signaﬁfezl intersection_f 5 5 MRTL policy rem dmension - N e : 150 Srent dmension -
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(MDP) with a context space C (scenarios), and the action space A and Cloud sync control through car following dynamics BTl e R O Y 5. s 50 oo T e, | H0E
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problem of algorithmic generalization within that task (i.e., finding

. . leading guided vehicle following human-driven vehicles latent dimension 1 latent dimension 1 latent dimension 1
a policy that performs well in the cMDP overall). : i In partial eco-driving With dedicated protected left With unprotected left turns in
I H ] V2 ViiComImEnICatan) adoption levels turns in the intersections the intersections
7_‘_* (8) — argmax B S\ S\ ’}/tTc(St, CLt) |88, - Onboard sensors | . ) . : .
- pereleard  Goal: Use a fleet of autonomous vehicles to reduce fleet-wide Robustness of MRTL to control noise (left) and bias noise (right)
] - ] missions while having less im n travel time. o
Method emissions while having fess fmpact on travel time E.g., control noise from C 510 ~*- Nominalpolicy % 20177 =g - Nominalpolicy | E g bias noise from
* Setting: 600 signhalized intersections were synthetically communication delays %E 15 kbl PO"Cy,, 4 L " PRI palcy biases toward certain
* Multi-residual Task Learning is a unified Iearnir.mg approach that generated to match high-level real-world intersection statistics. and sensor issues ég /,/’ 0 \ cities or conditions
leverages the synergy between multi-task learning and residual Both 20% and 100% eco-driving adoption levels were tested. c 5 —El e -10 \
reinforcement learning. _ . o | e = N(0,02%) 22 _o5le” -20 ¢ ers, = N(p,0.3)
 Nominal policy: A model-based heuristic (GLOSA algorithm) == 30 = -=-e
 We aim to learn the MRTL policy 7(s,¢):SXC = A by learning a . o | | | Tak “ %0 02 04 06 08  -06 -03 00 03 06
residual function f, (s, ¢): SXC — A on top of a given nominal * Baselines: Human-like driving using the Intelligent Driver Model aKkeaway Noise standard deviation oise mean

(IDM), Multi-task learning from scratch (MTL), and the nominal .

Combining conventional control with residual terms learned through DRL is a promising approach to
policy alone (NP)

achieve algorithmic generalization in solving contextual markov decision processes.

policy T, (s,¢): SXC — A such that,



