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U.S. GHG Emission
Transportation sector in the US contributes 29%
to the green house gas emission (GHG) in which 
77% is due to land transportation.

Challenge: In arterial roads, traffic signals result 
in stop-and-go traffic waves producing 
acceleration, and idling events, increasing fuel 
consumption and emission levels. 

Source : U.S. Environmental Protection Agency



Cities as Robots Sync..

Future cities are operation grounds for fleets of 
autonomous vehicles.  

Motivation: Leverage autonomous vehicle 
fleets to reduce GHG levels and fuel 
consumptions of vehicles when approaching 
and leaving a signalized intersection.

Objectives:
• Reduce fuel consumption
• Reduce CO2 emission
• Reduce the impact on travel time



Related Work

Previous work: 

Model-based methods for control
• Assumes a simplified model of the vehicle dynamics /inter-vehicle 

dynamics
• Simplify the objective to reduce fuel consumption without the impact on 

travel time

Model-free reinforcement learning for control 
• Single agent control 

Our work: 

Model-free Reinforcement learning for multi-agent control.
• Model-free
• Accommodate rich and realistic objectives
• Multi-agent control 



Optimal Control Problem

Optimal control Problem: 

such that for every vehicle i

Objective: Fuel and travel time 
reduction

Controlled acceleration according 
to car following dynamics

Travel distance requirement

Limits on headway, velocity and 
acceleration



Approach

Approach: Model-free Reinforcement learning for multi-agent control. 
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𝛾𝑡𝑟𝑡(𝑠𝑡, 𝑎𝑡 = 𝜋𝜃(𝑠𝑡))= max 𝜃Maximize discounted total reward



Reinforcement Learning for Eco-Driving 

Assumptions: 

• Vehicle to Vehicle (V2V) communication
• Infrastructure to Vehicle (I2V) 

communication
• To receive signal phase and timing 

(SPaT) information

• Partially Observable Markov Decision Process (POMDP) formulation of eco-driving problem
• Solve using policy gradient methods 



Eco-Driving POMDP

Observations
• ego-vehicle velocity 
• ego-vehicle position
• lead vehicle velocity
• lead vehicle position
• following vehicle velocity
• following vehicle position
• active traffic signal phase
• time to green 

Actions
• Longitudinal acceleration

State Transitions
• microscopic simulation tools are 

used to sample st+1 ∼ p(st, at).

Rewards
• objective terms are competing (fuel & 

travel time)
• rate of change of the reward terms are 

different in different regions of the 
composite objective 

𝑟(𝑠, 𝑎) =

𝑅1 𝑖𝑓 𝑎𝑛𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑡𝑜𝑝𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑎 𝑙𝑎𝑛𝑒.
𝑅2 𝑖𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑢𝑒𝑙 ≤ 𝛿 ∧ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑝 𝑐𝑜𝑢𝑛𝑡 = 0.
𝑅3 𝑖𝑓 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑢𝑒𝑙 ≤ 𝛿 ∧ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑝 𝑐𝑜𝑢𝑛𝑡 > 0
𝑅4 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

R1 = µ1
R2 =	µ2 +	exp(v)

R3=	µ4 +	µ5exp(v)	+	µ6s
R4	=	µ7 +	µ8exp(µ9f)	+	µ10exp(v)	+	µ11s



Training Agents
Training Setting: 

• Centralized training and decentralized execution paradigm

• Trust Region Policy Optimization (TRPO) algorithm for training agents 

TRPO update to policy,

s.t.

: surrogate advantage, a measure of how policy perform relative 
to the old policy using data from the old policy

: average KL-divergence between policies across states visited by 
the old policy



Experimental Setup
Traffic Setting: 

• Single intersection with only through-traffic and 
standard passenger cars

• VT-CPFM fuel consumption model and HBEFA-V3.1 
CO2 emission model

• A fixed time traffic signal control cycle with uniform 
vehicle arrivals 

• SUMO microscopic traffic simulator



Results 
Research Questions: 

• Q1: How does the proposed control policy compare to naturalistic 
driving and model-based control baselines? 

• Q2: How well does the proposed control policy generalize to 
environments unseen at training time?

Baselines: 

• V-IDM: deterministic vanilla version of the IDM car-following model

• N-IDM: noise version of IDM (model variability in driving behaviors of humans)

• M-IDM: N-IDM model with varying parameters (represent a diverse mix of 
drivers with varying levels of aggressiveness)

• Eco-CACC: model-based trajectory optimization strategy introduced in [1]



Results

Human driving 
behavior

(100% human 
driver penetration)

Under 100% penetration of CAVs,
• 18% reduction in fuel
• 25% reduction in CO2
• 20% increase in speed

Q1: How does the proposed control policy compare to naturalistic driving and model-
based control baselines? 

Learned control 
behavior
(100% AV 

penetration)



Results

Mixed traffic: Even 25% CAV penetration can bring at least 50%
of the total fuel and emission reduction benefits.

Q2: How well does the proposed control policy generalize to environments unseen at 
training time?

• Mixed traffic scenarios



Conclusion and Future Work

• Reinforcement learning can effectively be used to gain significant savings in fuel, 
emission while even improving travel speed.

• Generalizability of learn policies to out-of-distribution settings is successful 

Future work: 

• Consider multiple intersections in the optimization problem

• National level impact assessment as a climate change intervention



Thank you!


