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U.S. GHG Emission

Transportation sector in the US contributes 29%
to the green house gas emission (GHG) in which
77% is due to land transportation.

Challenge: In arterial roads, traffic signals result
in stop-and-go traffic waves producing
acceleration, and idling events, increasing fuel
consumption and emission levels.
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Cities as Robots Sync..

Future cities are operation grounds for fleets of
autonomous vehicles.

Moftivation: Leverage autonomous vehicle
fleets to reduce GHG levels and fuel
consumptions of vehicles when approaching
and leaving a signalized intersection.

Objectives:
« Reduce fuel consumption
« Reduce CO, emission
 Reduce the impact on travel time




Related Work

Previous work:

Model-based methods for conftrol
« Assumes a simplified model of the vehicle dynamics /inter-vehicle

dynamics
« Simplify the objective to reduce fuel consumption without the impact on

travel fime

Model-free reinforcement learning for control
« Single agent control

Qur work:

Model-free Reinforcement learning for multi-agent control.

* Model-free
« Accommodate rich and realistic objectives

« Multi-agent control



Optimal Control Problem

Optimal control Problem:
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Approach

Approach: Model-free Reinforcement learning for multi-agent control.

Action A,
R
Agent 3 :\ ;
- Q= S

| T Reward R;

State §;

Maximize discounted total reward = maxy 2 yir.(st, at = my(st))
t=1



Reinforcement Learning for Eco-Driving

« Partially Observable Markov Decision Process (POMDP) formulation of eco-driving problem
« Solve using policy gradient methods

Assumptions: Roadside | 2V

Unit (RSU) g w‘:nication
vav

:/,\ < communication/
'&nbo‘ard sensors

* Vehicle to Vehicle (V2V) communication
« Infrastructure to Vehicle (12V)
communication
« Toreceive signal phase and timing
(SPaT) information



Eco-Driving POMDP

Observations

« ego-vehicle velocity

« ego-vehicle position

* |lead vehicle velocity

* lead vehicle position

« following vehicle velocity
« following vehicle position
« qctive traffic signal phase
« time to green

Actions
« Longitudinal acceleration

State Transitions
* microscopic simulation tools are
used to sample sy ~ P(St, ).

Rewards
« oObjective terms are competing (fuel &

travel time)

« rate of change of the reward terms are
different in different regions of the
composite objective

R, if any vehicle stops at the start of a lane.

R, if average fuel <6 A average stop count = 0.
R, if average fuel < § A average stop count > 0
R, otherwise

Ry =1
Ry = 1, + exp(v)
Rs =l + HseXp(V) + HeS
Rs= {7 + pHgexXp(Hof) + 1ioexp(V) + i3S



Training Agents
Training Setting:

« Centralized training and decenitralized execution paradigm

« Trust Region Policy Optimization (TRPO) algorithm for fraining agents

TRPO update to policy,

0.1 = arg m(.;axﬁ (0k,0) s.t. Dkr(0]|6x) <6

L (0;,0) : surrogate advantage, a measure of how policy perform relative
to the old policy using data from the old policy

mo(a | s)
o (a | 8)

£ (05,60) = By gy, A% (s, a)

Dk (0||6;) : average KL-divergence between policies across states visited by
the old policy

Dir, (0110x) = Esnry, [Drcr (mo(- | 8)l|7a, (- | 5))]



Experimental Setup

Traffic Setting:

« Single intersection with only through-traffic and
standard passenger cars

« VT-CPFM fuel consumption model and HBEFA-V3.1
CO, emission model

« A fixed time traffic signal control cycle with uniform
vehicle arrivals

« SUMO microscopic traffic simulator




Results

Research Questions:

Baselines:

Q1: How does the proposed control policy compare to naturalistic
driving and model-based control baselines?

Q2: How well does the proposed control policy generalize to
environments unseen at training time¢

V-IDM: deterministic vanilla version of the IDM car-following model
N-IDM: noise version of IDM (model variability in driving behaviors of humans)

M-IDM: N-IDM model with varying parameters (represent a diverse mix of
drivers with varying levels of aggressiveness)

Eco-CACC: model-based trajectory optimization strategy infroduced in [1]



Results

Q1: How does the proposed control policy compare to naturalistic driving and model-
based control baselinese
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Results

Q2: How well does the proposed conftrol policy generalize to environments unseen at

training time?¢

 Mixed traffic scenarios
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Mixed traffic: Even 25% CAV penetration can bring at least 50%

of the total fuel and emission reduction benefits.




Conclusion and Future Work

« Reinforcement learning can effectively be used to gain significant savings in fuel,
emission while even improving travel speed.

« Generalizability of learn policies to out-of-distribution settings is successful

Future work:

« Consider multiple intersections in the optimization problem

« Nafional level impact assessment as a climate change intervention



Thank you!



