Mitigating Metropolitan Carbon Emissions
with Dynamic Eco-driving at Scale

TL;DR: Learned dynamic eco-driving behaviors can cut city-wide intersection carbon emissions by 11-22%
without harming throughput or safety, but implementing such strategies requires careful planning.

* Goal: Can semi-autonomous vehicles programmed to

mitigate stop-and-go traffic and carbon emissions move the

needle on climate change mitigation goals?

* Approach: A prospective impact assessment of eco-driving
at signalized intersections by representative traffic scenarios

modeling and multi-task deep reinforcement learning to
optimize for eco-driving behaviors.

Representative scenario modeling: One million traffic scenarios
in 6000 signalized intersections, considering 33 eco-driving

factors across San Francisco, Los Angeles, and Atlanta.

Prospective Impact Assessment

n Annual emission benefits

Vehicle trajectories optimized for emissions can cut
city-wide intersection carbon emissions by 11-22%.
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Control through car following dynamics
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Eco-driving control: Multi-task deep reinforcement learning
with zero-shot transfer learning to solve a million eco-driving
control problems across traffic scenarios.
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Pearson correlation

Human-like driving behavior (left) vs
100% eco-driving behavior (right)

Factors that affect emission benefits
change with eco-driving adoption level.

a Factor impact

Pearson correlation analysis of eco-driving benefits and factors
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